Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T11:02:08.578Z Has data issue: false hasContentIssue false

Sediment-Color Record from the Northeast Atlantic Reveals Patterns of Millennial-Scale Climate Variability during the Past 500,000 Years

Published online by Cambridge University Press:  20 January 2017

Jan P. Helmke
Affiliation:
GEOMAR Research Center for Marine Geosciences, Wischhofstr. 1-3, D-24148 Kiel, Germany
Michael Schulz
Affiliation:
Institute for Geosciences, University of Kiel, Olshausenstrasse 40, D-24118 Kiel, Germany
Henning A. Bauch
Affiliation:
Alfred-Wegener Institute for Polar and Marine Research, Columbusstrasse, D-27568 Bremerhaven, Germany

Abstract

A 500,000-yr-long deep-sea sediment-color record from the Northeast Atlantic was investigated to reconstruct the evolution of late Pleistocene climate variability on millennial time scales. Variations of the red–green color intensity are probably caused by climatically induced changes in the ice-rafted input of red-colored iron-bearing terrigenous material to the core site. The resolution of the age model impedes the detection of distinct spectral features at sub-Milankovitch periodicities. Hence, millennial-scale climate variability is quantified as time-dependent variance of the high-pass filtered color time series. The course of the estimated variance shows distinct patterns, which can be linked to continental ice mass. During the past 500,000 yr, large-amplitude millennial-scale climate variability occurs only if continental ice mass exceeds a threshold level, equivalent to sea level at approximately 40% of the lowering during the last glacial maximum.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alley, R.B., Anandakrishnan, S., and Jung, P. Stochastic resonance in the North Atlantic. Paleoceanography 16, (2001). 190198.CrossRefGoogle Scholar
Balsam, W.L., and Deaton, B.C. Sediment dispersal in the Atlantic Ocean: Evaluation by visible light spectra. Reviews in Aquatic Sciences 4, (1991). 411447.Google Scholar
Balsam, W.L., Deaton, B.C., and Damuth, J.E. Evaluating optical lightness as a proxy for carbonate content in marine sediment cores. Marine Geology 161, (1999). 141153.CrossRefGoogle Scholar
Barranco, F.T., Balsam, W.L., and Deaton, B.C. Quantative reassessement of brick red lutites: Evidence from reflectance spectrophotometry. Marine Geology 89, (1989). 299314.CrossRefGoogle Scholar
Bauch, H.A., Erlenkeuser, H., Jung, S.J.A., and Thiede, J. Surface and deep water changes in the subpolar North Atlantic during Termination 2 and the last interglaciation. Paleoceanography 15, (2000). 7684.CrossRefGoogle Scholar
Bendat, J.L., and Piersol, A.G. Random Data. (1986). Wiley, New York.Google Scholar
Berger, W.H., Bickert, T., Yasuda, M.K., and Wefer, G. Reconstruction of atmospheric CO2 from ice-core data and the deep-sea record of Ontong Java plateau: The Milankovitch chron. Geologische Rundschau 85, (1996). 466495.CrossRefGoogle Scholar
Bond, G.C., and Lotti, R. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science 267, (1995). 10051010.CrossRefGoogle ScholarPubMed
Bond, G.C., Heinrich, H., Broecker, W.S., Labeyrie, L., McManus, J.F., Andrews, J., Huon, S., Jantschik, R., Clasen, S., Simet, C., Tedesco, K., Klas, M., Bonani, G., and Ivy, S. Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 360, (1992). 245249.CrossRefGoogle Scholar
Bond, G.C., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, G. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial sediments. Science 278, (1997). 12571266.CrossRefGoogle Scholar
Bond, G.C., Showers, W., Elliot, M., Evans, M., Lotti, R., Hajdas, I., Bonani, G., and Johnson, S. The North Atlantic's 1-2 kyr Climate Rhythm: Relation to Heinrich Events, Dansgaard/Oeschger Cycles and the Little Ice Age. Clark, P.U., Webb, R.S., and Keigwin, L.D. Mechanisms of Global Climate Change at Millennial Time Scales. (1999). Am. Geophys. Union, Washington. 3558.Google Scholar
Broecker, W.S., Bond, G.C., and Klas, M. A salt oscillator in the glacial Atlantic? The concept. Paleoceanography 5, (1990). 469477.CrossRefGoogle Scholar
Chapman, M.R., and Shackleton, N.J. Global ice-volume fluctuations, North Atlantic ice-rafting events, and deep-ocean circulation changes between 130 and 70 ka. Geology 27, (1999). 795798.2.3.CO;2>CrossRefGoogle Scholar
Chappell, J., Omura, A., Esat, T., McCulloch, M., Pandolfi, J., Ota, Y., and Pillans, B. Reconcilation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth and Planetary Science Letters 141, (1996). 227236.CrossRefGoogle Scholar
Cortijo, E., Yiou, P., Labeyrie, L., and Cremer, M. Sedimentary record of rapid climatic variability in the North Atlantic Ocean during the last glacial cycle. Paleoceanography 10, (1995). 911926.CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J., and Bond, G.C. Evidence for general instability of past climate from a 250-kyr-ice-core record. Nature 364, (1993). 218220.CrossRefGoogle Scholar
Deaton, B.C., and Balsam, W.L. Visible spectroscopy—a rapid tool for determining hematite and goethite concentration in geological materials. Journal of Sedimentary Petrology 61, (1991). 628632.CrossRefGoogle Scholar
deMenocal, P., Ortiz, J., Guilderson, T., and Sarnthein, M. Coherent high- and low-latitude climate during the Holocene warm period. Science 288, (2000). 21982202.CrossRefGoogle ScholarPubMed
Didié, C., and Bauch, H.A. Species composition and glacial-interglacial variations in the ostracode fauna of the northeast Atlantic. Marine Micropaleontology 40, (2000). 105129.CrossRefGoogle Scholar
Fairbanks, R.G.A. A 17,000-year glacio-eustatitc sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, (1989). 637642.CrossRefGoogle Scholar
Grootes, P.M., and Stuiver, M. Oxygen 18/16 variability in Greenland snow and ice with 10−3- to 105-year time resolution. Journal of Geophysical Research C102, (1997). 2645526470.CrossRefGoogle Scholar
Helmke, J.P., and Bauch, H.A. Glacial-interglacial relationship between carbonate components and sediment reflectance in the North Atlantic. Geo-Marine Letters 21, (2001). 1622.CrossRefGoogle Scholar
Horowitz, L.L. The effects of spline interpolation on power spectral density. IEEE Transactions on Acoustics, Speech, and Signal Procecssing 22, (1974). 2227.CrossRefGoogle Scholar
Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., and Shackleton, N.J. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. Berger, A.L., Imbrie, J., Hays, J.D., Kukla, G., and Saltzman, B. Milankovitch and Climate. (1984). Reidel, Dordrecht. 269305.Google Scholar
Jung, S.J.A. Wassermassenaustausch zwischen NE-Atlantik und Nordmeer während der letzten 300.000/80.000 Jahre im Abbild stabiler O- und C-Isotope. Reports SFB 313 61, (1996). Google Scholar
Keeling, C.D., and Whorf, T.P. The 1,800-year oceanic tidal cycle: A possible cause of rapid climate change. Proceedings of the National Academy of Sciences 97, (2000). 38143819.CrossRefGoogle ScholarPubMed
MacAyeal, D.R. A low-order model of Heinrich event cycle. Paleoceanography 8, (1993). 767773.CrossRefGoogle Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., and Shackleton, N.J. Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300,000-Year chronostratigraphy. Quaternary Research 27, (1987). 129.CrossRefGoogle Scholar
McManus, J.F., Oppo, D.W., and Cullen, J.L. A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283, (1999). 971975.CrossRefGoogle ScholarPubMed
Nagao, S., and Nakashima, S. The factors controlling vertical color variations of North Atlantic Madeira Abyssal Plain sediments. Marine Geology 109, (1992). 8394.CrossRefGoogle Scholar
Oppo, D.W., McManus, J.F., and Cullen, J.L. Abrupt climate events 500,000 to 340,000 years ago: Evidence from subpolar North Atlantic sediments. Science 279, (1998). 13351338.CrossRefGoogle Scholar
Oppo, D.W., Keigwin, L.D., McManus, J.F., and Cullen, J.L. Persistent suborbital climate variability in marine isotope stage 5 and Termination II. Paleoceanography 16, (2001). 280292.CrossRefGoogle Scholar
Ortiz, J., Mix, A., Harris, S., and O'Connell, S. Diffuse spectral reflectance as a proxy for percent carbonate content in North Atlantic sediments. Paleoceanography 14, (1999). 171186.CrossRefGoogle Scholar
Richter, T.O., Lassen, S., van Weering, T.C.E., and de Haas, H. Magnetic susceptibility patterns and provenance of ice-rafted material at Feni Drift, Rockall Trough: Implications for the history of the British-Irish ice sheet. Marine Geology 173, (2001). 3754.CrossRefGoogle Scholar
Ruddiman, W.F. Late Quaternary deposition of ice-rafted sand in the subpolar North Atlantic (lat 40° to 65°N). Geological Society of America Bulletin 88, (1977). 18131821.2.0.CO;2>CrossRefGoogle Scholar
Rybicki, G.B., and Press, W.H. Class of fast methods for processing irregularly sampled otherwise inhomogenous one-dimensonal data. Physical Review Letters 74, (1995). 10601063.CrossRefGoogle Scholar
Sakai, K., and Peltier, W.R. Dansgaard-Oeschger oscillations in a coupled atmosphere-ocean climate model. Journal of Climate 10, (1997). 949970.2.0.CO;2>CrossRefGoogle Scholar
Sarnthein, M., Stattegger, K., Dreger, D., Erlenkeuser, H., Grootes, P. M., Haupt, B., Jung, S. J. A., Kiefer, T., Kuhnt, W., Pflaumann, U., Schäfer-Neth, C., Schulz, H., Schulz, M., Seidov, D., Simstich, J., van Krefveld, S., Vogelsang, E., Voelker, A. H. L., and Weinelt, M. (2001). Fundamental modes and abrupt changes in North Atlantic circulation and climate over the last 60 ky—Concepts, reconstruction, and numerical modelling.. In The Northern North Atlantic: A Changing Environment Schäfer, P., Ritzrau, W., Schlüter, M., and Thiede, J., Eds., pp. 365410. Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
Schulz, M. The tempo of climate change during Dansgaard-Oeschger interstadials and its potential to affect the manifestation of the 1470-year climate cycle. Geological Research Letters, in press.Google Scholar
Schulz, M., and Stattegger, K. Spectrum: Spectral analysis of unevenly spaced paleoclimatic time series. Computer and Geosciences 23, (1997). 929945.CrossRefGoogle Scholar
Schulz, M., Berger, W.H., Sarnthein, M., and Grootes, P.M. Amplitude variations of 1470-year climate oscillations during the last 100,000 years linked to fluctuations of continental ice mass. Geophysical Research Letters 26, (1999). 33853388.CrossRefGoogle Scholar
Shackleton, N.J. The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science 289, (2000). 18971902.CrossRefGoogle ScholarPubMed
Stuiver, M., and Grootes, P.M. GISP2 oxygen isotope ratios. Quaternary Research 53, (2000). 277284.CrossRefGoogle Scholar
Stuiver, M., Reimer, P. J., Bard, E., Beck, J. W., Burr, G. S., Hughen, K. A., Kromer, B., McCormac, G., van der Pflicht, J., and Spurk, M. (1998). INTCAL98 radiocarbon age calibration, 24,000-0 cal BP.. In “INTCAL 98: Calibration Issue” Stuiver, M. and van der Pflicht, J., Eds., Radiocarbon 40, 10411083.Google Scholar
van Geel, B., Raspopov, O.M., Renssen, H., van der Pflicht, J., Dergachev, V.A., and Meijer, H.A.J. The role of solar forcing upon climate change. Quaternary Science Reviews 18, (1999). 331338.CrossRefGoogle Scholar
van Kreveld, S.A., Sarnthein, M., Erlenkeuser, H., Grootes, P.M., Jung, S.J.A., Nadeau, M.J., Pflaumann, U., and Voelker, A.H.L. Potential links between surging ice sheets, circulation changes and the Dansgaard-Oeschger cycles in the Irminger Sea. Paleoceanography 15, (2000). 425442.CrossRefGoogle Scholar
Voelker, A.H.L., Sarnthein, M., Grootes, P.M., Erlenkeuser, H., Laj, C., Mazaud, A., Nadeau, M.-J., and Schleicer, M. Correlation of marine 14C ages from the Nordic seas with the GISP2 isotope record: Implications for radiocarbon calibration beyond 25 ka BP. Radiocarbon 40, (1998). 517534.CrossRefGoogle Scholar
Winton, M. (1993). Deep coupling oscillations of the oceanic thermohaline circulation.. In “Ice in the Climate System” Peltier, W. R., Ed., pp. 417432. NATO ASI Series. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Yokoyama, Y., Lambeck, K., De Deckker, P., Johnston, P., and Fifield, L.K. Timing of the last glacial maximum from observed sea-level minima. Nature 406, (2000). 713716.CrossRefGoogle ScholarPubMed