Skip to main content
×
×
Home

14C release from steels under aerobic conditions

  • M Rodríguez (a1), J L Gascón (a1), E Magro (a1), G Piña (a1), E Lara (a1) and L Sevilla (a1)...
Abstract

Radiocarbon (14C) is a key radionuclide in the assessment of the safety of underground geological disposal facilities for radioactive wastes, and the understanding of the 14C behavior in stainless steel may lead to a re-evaluation of the near-surface repository for the disposal of wastes containing this radionuclide in high concentrations. To achieve this objective, leaching experiments were planned for two different scenarios. The first is where the leaching solution, NaOH solution of pH ca. 12 in aerobic conditions, simulates the expected conditions in a cement-based near-surface repository over long time periods. The other one uses an acid solution of 1M H3PO4, which has been proved as a high efficiency chemical removal agent of 14C in graphite. The development of both analytical methods and protocols to measure the release of 14C from the activated steel samples and the speciation in the aqueous and gaseous phase has been undertaken as part of the EC CAST (CArbon-14 Source Term) project. Analytical methods, suitable for identifying and quantifying low molecular weight organic molecules, comprise ion chromatography (IC) and gas chromatography coupled to mass spectrometry (GC-MS); they are described for aqueous and gaseous samples, respectively. In this paper the preparation of leaching experiments to measure the release of 14C and the results obtained are described.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      14C release from steels under aerobic conditions
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      14C release from steels under aerobic conditions
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      14C release from steels under aerobic conditions
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
*Corresponding author. Email: marina.rodriguez@ciemat.es.
References
Hide All
Blackwood, DJ, Gould, LJ, Naish, CC, Porter, FM, Rance, AP, Sharland, SM, Smart, NR, Thomas, MI, Yates, T. 2002. The localised corrosion of carbon steel and stainless steel in simulated repository environments. AEA Technology Report AEAT/ERRA-0318.
Deng, B, Campbell, TJ, Burris, DR. 1997. Hydrocarbon formation in metallic iron/water systems. Environmental Science and Technology 31:11851190.
Hardy, LI, Gillham, RW. 1996. Formation of hydrocarbons from the reduction of aqueous CO2 by zero-valent iron. Environmental Science and Technology 30:5765.
International Organization for Standardization. 1982(E). Long-Term Leach Testing of Solidified Radioactive Waste Forms. ISO 6961.
Kursten, B. 2014. Uniform corrosion rate data of carbon steel in cementitious environments relevant to the Supercontainer design. State-of-the-art report as of December 2013, SCK∙CEN Report SCK∙CEN-ER-94.
Piña, G, Arsene, C, Capone, M, Gascón, JL, Jones, A, McDermott, L, Vulpius, D. 2013. Decontamination factors by decontamination agents under normal pressure. Carbowaste Deliverable D-4.3.5.
Sakuragi, T, Yoshida, S, Kato, O, Tateishi, Y. 2016a. Study of stainless steel corrosion by hydrogen measurement under deoxygenated, low-temperature and basic repository conditions. Progress in Nuclear Energy 87:2631.
Sakuragi, T, Yoshida, S, Kinugasa, J, Kato, O, Tateishi, Y. 2016b. Corrosion kinetics of stainless steel by hydrogen measurement under deep geological repository condition. Proceedings of Waste Management Conference.
Sakuragi, T, Yamashitab, Y, Akagib, M, Takahashi, R. 2016c. Carbon 14 distribution in irradiated BWR fuel cladding and released Carbon 14 after aqueous immersion of 6.5 years. Procedia Chemistry 21:341348.
Smart, NR, Blackwood, DJ, Marsh, GP, Naish, CC, O’Brien, TM, Rance, AP, Thomas, MI. 2004. The anaerobic corrosion of carbon and stainless steels in simulated cementitious repository environments: a summary review of Nirex research. AEA Technology Report AEAT/ERRA-0313.
Ueda, H, Sakuragi, T, Fujii, N and Owada, H. 2017. Evaluation of Carbon-14 release from irradiated zircaloy fuel cladding through a long-term static leaching test. 6th East Asia Forum on Radwaste Management Conference.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Radiocarbon
  • ISSN: 0033-8222
  • EISSN: 1945-5755
  • URL: /core/journals/radiocarbon
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed