Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-16T11:45:58.926Z Has data issue: false hasContentIssue false

Late Pleistocene and Holocene Vegetation, Climate Dynamics, and Amazonian Taxa in the Atlantic Forest, Linhares, SE Brazil

Published online by Cambridge University Press:  09 February 2016

Antonio Alvaro Buso Junior*
Center for Nuclear Energy in Agriculture (CENA/USP), Brazil
Luiz Carlos Ruiz Pessenda
Center for Nuclear Energy in Agriculture (CENA/USP), Brazil
Paulo Eduardo de Oliveira
São Francisco University, Brazil
Paulo César Fonseca Giannini
Instituto de Geociências da Universidade de São Paulo, Brazil
Marcelo Cancela Lisboa Cohen
Federal University of Pará, Brazil
Cecília Volkmer-Ribeiro
Fundação Zoobotânica do Rio Grande do Sul, Brazil
Sonia Maria Barros de Oliveira
Instituto de Geociências da Universidade de São Paulo, Brazil
Dilce De Fátima Rossetti
National Institute of Space Research, Brazil
Flávio Lima Lorente
Center for Nuclear Energy in Agriculture (CENA/USP), Brazil
Marcos Antonio Borotti Filho
Center for Nuclear Energy in Agriculture (CENA/USP), Brazil
Jolimar Antonio Schiavo
Universidade Estadual de Mato Grosso do Sul, Brazil
José Albertino Bendassolli
Center for Nuclear Energy in Agriculture (CENA/USP), Brazil
Marlon Carlos França
Programa de Pós-Graduação em Geologia e Geoquímica, Instituto de Geociências, Univ. Federal do Pará (UFPA), Brazil
José Tasso Felix Guimarães
Programa de Pós-Graduação em Geologia e Geoquímica, Instituto de Geociências, Univ. Federal do Pará (UFPA), Brazil
Geovane Souza Siqueira
Vale Nature Reserve; Brazil
2Corresponding author. Email:


Analysis of biological proxies in lake sediment and geochemical analysis of soil profiles reveal natural vegetation dynamics, with climate inferences, since the late Pleistocene in a fragment of the pristine lowland Atlantic Forest of southeastern Brazil. Carbon isotopes from soil organic matter and 14C ages from the humin fraction indicate the dominance of C3 plants since ∼17,000 cal BP. Palynological analysis of a sediment core indicates the presence of Atlantic Forest vegetation since 7700 cal BP. Changes in the relative abundance of tree ferns and palms suggest the predominance of a humid period from ∼7000–4000 cal BP and establishment of the modern seasonal climate at ∼4000 cal BP. Data indicate maintenance of the regional forest coverage since the late Pleistocene, corroborating previous suggestions that this region was a forest refuge during less humid periods of the late Pleistocene and Holocene. Some plant taxa with currently divided distributions between Amazonia and the Atlantic Forest colonized the region since at least 7500 cal BP, indicating an earlier connection between Amazonia and Atlantic Forest.

Paleoclimatology and Paleohydrology
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Behling, H. 1997a. Late Quaternary vegetation, climate and fire history from the tropical mountain region of Morro de Itapeva, SE Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 129:407–22.Google Scholar
Behling, H. 1997b. Late Quaternary vegetation, climate and fire history of the Araucaria forest and campos region from Serra Campos Gerais, Paraná State (south Brazil). Review of Palaeobotany and Palynology 97: 109–21.Google Scholar
Behling, H. 2003. Late glacial and Holocene vegetation, climate and fire history inferred from Lagoa Nova in the southeastern Brazilian lowland. Vegetation History and Archaeobotany 12:263–70.Google Scholar
Behling, H, Lichte, M. 1997. Evidence of dry and cold climatic conditions at glacial times in tropical Southeastern Brazil. Quaternary Research 48:348–58.Google Scholar
Behling, H, Negrelle, RB. 2001. Tropical rain forest and climate dynamics of the Atlantic Lowland, Southern Brazil, during the Late Quaternary. Quaternary Research 56:383–9.Google Scholar
Behling, H, Arz, HW, Pätzold, J, Wefer, G. 2000. Late Quaternary vegetational and climate dynamics in northeastern Brazil, inferences from marine core GeoB-3104-1. Quaternary Science Reviews 19:981–94.Google Scholar
Behling, H, Arz, HW, Pätzold, J, Wefer, G. 2002. Late Quaternary vegetational and climate dynamics in southeastern Brazil, inferences from marine cores GeoB 3229-2 and GeoB 3202-1. Palaeogeography, Palaeoclimatology, Palaeoecology 179:227–43.Google Scholar
Behling, H, Pillar, VP, Orlóci, L, Bauermann, SG. 2004. Late Quaternary Araucaria forest, grassland (campos), fire and climate dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 203:277–97.Google Scholar
Boring, LR, Monk, CD, Swank, WT. 1981. Early regeneration of a clear-cut southern Appalachian forest. Ecology 62(5):1244–53.CrossRefGoogle Scholar
Buso Junior, AA, Pessenda, LCR, De Oliveira, PE, Giannini, PCF, Cohen, MCL, Volkmer-Ribeiro, C, Oliveira, SMB, Favaro, DIT, Rossetti, DF, Lorente, FL, Borotti Filho, MA, Schiavo, JA, Bendassolli, JA, França, MC, Guimarães, JTF, Siqueira, GS. From an estuary to a freshwater lake: a paleo-estuary evolution in the context of Holocene sea-level fluctuations, SE Brazil. Radiocarbon, these proceedings, doi:10.2458/azu_is_rc.55.16210.Google Scholar
Cabanne, GS, d'Horta, FM, Sari, EHR, Santos, FR, Miyaki, CY. 2008. Nuclear and mitochondrial phylogeography of the Atlantic forest endemic Xiphorhynchus fuscus (Aves: Dendrocolaptidae): biogeography and systematics implications. Molecular Phylogenetics and Evolution 49:760–73.CrossRefGoogle ScholarPubMed
Colinvaux, P, De Oliveira, PE, Patiño, JEM. 1999. Amazon Pollen Manual and Atlas. Manual e Atlas Palinológico da Amazonia. Amsterdam: Harwood Academic Publishers.Google Scholar
Costa, LP. 2003. The historical bridge between the Amazon and the Atlantic Forest of Brazil: a study of molecular phylogeography with small mammals. Journal of Biogeography 30:7186.CrossRefGoogle Scholar
Cruz, FW Jr, Burns, SJ, Karmann, I, Sharp, WD, Vuille, M, Cardoso, AO, Ferrari, JA, Dias, PLS, Viana, O Jr. 2005. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434(7029):63–6.CrossRefGoogle Scholar
Cruz, FW Jr, Burns, SJ, Karmann, I, Sharp, WD, Vuille, M, Ferrari, JA. 2006a. A stalagmite record of changes in atmospheric circulation and soil processes in the Brazilian subtropics during the Late Pleistocene. Quaternary Science Reviews 25:2749–61.Google Scholar
Cruz, FW Jr, Burns, SJ, Karmann, I, Sharp, WD, Vuille, M. 2006b. Reconstruction of regional atmospheric circulation features during the late Pleistocene in subtropical Brazil from oxygen isotope composition of speleothems. Earth and Planetary Science Letters 248:495507.Google Scholar
De Oliveira, PE, Barreto, AMF, Suguio, K. 1999. Late Pleistocene/Holocene climatic and vegetational history of the Brazilian Caatinga: the fossil dunes of the middle São Francisco River. Palaeogeography, Palaeoclimatology, Palaeoecology 152:319–37.Google Scholar
Dominguez, JML. 2009. The coastal zone of Brazil. In: Dillenburg, SR, Hesp, PA, editors. Geology and Geomorphology of Holocene Coastal Barriers of Brazil. Berlin: Springer-Verlag. p 1746.Google Scholar
Fiaschi, P, Pirani, JR. 2009. Review of plant biogeographic studies in Brazil. Journal of Systematics and Evolution 47(5):477–96.Google Scholar
Garcia, MJ, De Oliveira, PE, Siqueira, E, Fernandes, RS. 2004. A Holocene vegetational and climatic record from the Atlantic rainforest belt of coastal State of São Paulo, SE Brazil. Review of Palaeobotany and Palynology 131:181–99.Google Scholar
Garreaud, RD, Vuille, M, Compagnucci, R, Marengo, J. 2009. Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology 281: 180–95.Google Scholar
Gouveia, SEM, Pessenda, LCR, Aravena, R, Boulet, R, Scheel-Ybert, R, Bendassolli, JA, Ribeiro, AS, Freitas, HA. 2002. Carbon isotopes in charcoal and soils in studies of paleovegetation and climate changes during the late Pleistocene and the Holocene in the southeast and centerwest regions of Brazil. Global and Planetary Change 33:95106.CrossRefGoogle Scholar
Grazziotin, FG, Monzel, M, Echeverrigaray, S, Bonatto, SL. 2006. Phylogeography of the Bothrops jararaca complex (Serpentes: Viperidae): past fragmentation and island colonization in the Brazilian Atlantic Forest. Molecular Ecology 15:3969–82.Google Scholar
Grimm, EC. 1987. CONISS: a Fortran 77 program for stratigraphycally constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13(1):1335.CrossRefGoogle Scholar
Grimm, EC. 1992. Tilia and Tilia-graph: pollen spreadsheet and graphics program. Program and Abstracts, 8th International Palynological Congress. Aix-en-Provence. p 56.Google Scholar
Instituto Brasileiro de Geografia e Estatística (IBGE). 2004. Mapa de biomas do Brasil - primeira aproximação.Google Scholar
Laskar, J, Robutel, P, Joutel, F, Gastineau, M, Correia, ACM, Levrard, B. 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics 428:261–85.CrossRefGoogle Scholar
Ledru, MP. 1993. Late Quaternary environmental and climatic changes in central Brazil. Quaternary Research 39:90–8.CrossRefGoogle Scholar
Ledru, MP, Salgado-Labouriau, ML, Lorscheitter, ML. 1998. Vegetation dynamics in Southern and Central Brazil during the last 10,000 yr. BP. Review of Palaeobotany and Palynology 99:131–42.Google Scholar
Ledru, MP, Cordeiro, RC, Dominguez, JML, Martin, L, Mourguiart, P, Sifeddine, A, Turcq, B. 2001. Late-Glacial cooling in Amazonia inferred from pollen at Lagoa do Caçó, Northern Brazil. Quaternary Research 55:4756.Google Scholar
Ledru, MP, Mourguiart, P, Riccomini, C. 2009. Related changes in biodiversity, insolation and climate in the Atlantic rainforest since the last interglacial. Palaeogeography Palaeoclimatology, Palaeoecology 271: 140–52.Google Scholar
Lista de Espécies da Flora do Brasil. 2013. Acessed 27 October 2012.Google Scholar
Londré, RA, Schnitzer, SA. 2006. The distribution of lianas and their change in abundance in temperate forests over the past 45 years. Ecology 87(12):2973–8.CrossRefGoogle ScholarPubMed
Macko, SA, Estep, MLF. 1984. Microbial alteration of stable nitrogen and carbon isotopic compositions or organic matter. Organic Geochemistry 6:787–90.Google Scholar
Magnago, LFS, Martins, SV, Pereira, OJ. 2011. Floristic heterogeneity of phytocenoses restinga in Rio de Janeiro and Espírito Santo states, Brazil. Revista Árvore 35(2):245–54.Google Scholar
Marchant, R, Almeida, L, Behling, H, Berrio, JC, Bush, M, Cleef, A, Duivenvoorden, J, Kappelle, M, De Oliveira, PE, Oliveira-Filho, AT, Lozano-García, S, Hooghiemstra, H, Ledru, MP, Ludlow-Wiechers, B, Markgraf, V, Mancini, V, Paez, M, Prieto, A, Rangel, O, Salgado-Labouriau, ML. 2002. Distribution and ecology of parent taxa of pollen lodged within the Latin America Pollen Database. Review of Palaeobotany and Palynology 121:175.Google Scholar
Marchant, R, Hooghiemstra, H. 2004. Rapid environmental change in African and South American tropics around 4000 years before present: a review. Earth-Science Reviews 66:217–60.Google Scholar
Martin, L, Suguio, K. 1992. Variation of coastal dynamics during the last 7000 years recorded in beach-ridge plains associated with river mouths: example from the central Brazilian coast. Palaeogeography, Palaeoclimatology, Palaeoecology 99:119–40.CrossRefGoogle Scholar
McCormac, FG, Hogg, AG, Blackwell, PG, Buck, CE, Higham, TFG, Reimer, PJ. 2004. SHCal04 Southern Hemisphere calibration, 0-11.0 cal kyr BP. Radiocarbon 46(3):1087–92.Google Scholar
Mori, SA, Prance, GT. 1981. The “sapucaia” group of Lecythis (Lecythidaceae). Brittonia 33(1):7080.Google Scholar
Myers, N, Mittermeier, RA, Mittermeier, CG, Fonseca, GAB, Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403(6772):853–8.Google Scholar
Oliveira-Filho, AT, Ratter, JA. 1995. A study of the origin of central Brazilian forests by the analysis of plant species distribution patterns. Edinburgh Journal of Botany 52(2):141–94.Google Scholar
Pessenda, LCR, Aravena, R, Melfi, AJ, Telles, ECC, Boulet, R, Valencia, EPE, Tomazello, M. 1996. The use of carbon isotopes (13C, 14C) in soil to evaluate vegetation changes during the Holocene in central Brazil. Radiocarbon 38(2):191201.Google Scholar
Pessenda, LCR, Gouveia, SEM, Aravena, R. 2001. Radiocarbon dating of total soil organic matter and humin fraction and its comparison with 14C ages of fossil charcoal. Radiocarbon 43(2B):595601.Google Scholar
Pessenda, LCR, Gouveia, SEM, Aravena, R, Boulet, R, Valencia, EPE. 2004. Holocene fire and vegetation changes in southeastern Brazil as deduced from fossil charcoal and soil carbon isotopes. Quaternary International 114:3543.Google Scholar
Pessenda, LCR, Ledru, MP, Gouveia, SEM, Aravena, R, Ribeiro, AS, Bendassolli, JA, Boulet, R. 2005. Holocene palaeoenvironmental reconstruction in northeastern Brazil inferred from pollen, charcoal and carbon isotope records. The Holocene 15(6):814–22.CrossRefGoogle Scholar
Pessenda, LCR, De Oliveira, PE, Mofatto, M, Medeiros, VB, Garcia, RJF, Aravena, R, Bendassoli, JA, Leite, AZ, Saad, AR, Etchebehere, ML. 2009. The evolution of a tropical rainforest/grassland mosaic in southeastern Brazil since 28,000 14C BP based on carbon isotopes and pollen records. Quaternary Research 71:437–52.Google Scholar
Pessenda, LCR, Saia, SEMG, Gouveia, SEM, Ledru, MP, Sifeddine, A, Amaral, PGC, Bendassolli, JA. 2010a. Last millennium environmental changes and climate inferences in the Southeastern Atlantic forest, Brazil. Annals of the Brazilian Academy of Sciences 82(3): 717–29.CrossRefGoogle ScholarPubMed
Pessenda, LCR, Gouveia, SEM, Ribeiro, AS, De Oliveira, PE, Aravena, R. 2010b. Late Pleistocene and Holocene vegetation changes in northeastern Brazil determined from carbon isotopes and charcoal records in soils. Palaeogeography, Palaeoclimatology, Palaeoecology 297:597608.Google Scholar
Prance, GT. 1982. A review of the phytogeographic evidences for Pleistocene climatic changes in the Neotropics. Annals of the Missouri Botanical Garden 69(3): 594624.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4): 1111–50.Google Scholar
Rolim, SG, Ivanauskas, NM, Rodrigues, RR, Nascimento, MT, Gomes, JML, Folli, DA, Couto, HTZ. 2006. Composição florística do estrato arbóreo da floresta estacional semidecidual da planície aluvial do Rio Doce, Linhares, ES, Brasil. Acta Botanica Brasilica 20(3): 549–61.Google Scholar
Saia, SEMG, Pessenda, LCR, Gouveia, SEM, Aravena, R, Bendassolli, JA. 2008. Last Glacial Maximum (LGM) vegetation changes in the Atlantic Forest, southeastern Brazil. Quaternary International 184:195201.Google Scholar
Santos, RD, Barreto, WO, Silva, EF, Araújo, WS, Claessen, MEC, Paula, JL, Souza, JLR, Perez, DV, Souza, JS. 2004. Levantamento expedito dos solos das reservas florestais de Linhares e Sooretama no estado do Espírito Santo. Embrapa Solos, Boletim de Pesquisa e Desenvolvimento 49:168.Google Scholar
Santos, AMM, Cavalcanti, DR, Silva, JMC, Tabarelli, M. 2007. Biogeographical relationships among tropical forests in north-eastern Brazil. Journal of Biogeography 34:437–46.Google Scholar
Scarano, FR, Ribeiro, KT, Moraes, LFD, Lima, HC. 1997. Plant establishment on flooded and unflooded patches of a freshwater swamp forest in Southeastern Brazil. Journal of Tropical Ecology 13(6):793803.Google Scholar
Shono, K, Davies, SJ, Kheng, CY. 2006. Regeneration of native plant species in restored forests on degraded lands in Singapore. Forest Ecology and Management 237:574–82.Google Scholar
Stuiver, M, Reimer, PJ. 1993. Extended 14C data base and revised CALIB 3.0 14C calibration program. Radiocarbon 35(1):215–30.Google Scholar
Veríssimo, NP, Safford, HDF, Behling, H. 2012. Holocene vegetation and fire history of the Serra do Caparaó, SE Brazil. The Holocene 22(11):1243–50.Google Scholar
Vidotto, E, Pessenda, LCR, Ribeiro, AS, Freitas, HA, Bendassolli, JA. 2007. Dinâmica do ecótono floresta-campo no sul do estado do Amazonas no Holoceno, através de estudos isotópicos e fitossociológicos. Acta Amazonica 37(3):385400.Google Scholar
Wanner, H, Brönnimann, S. 2012. Is there a global Holocene climate mode? PAGES News 20(1):44–5.CrossRefGoogle Scholar
Wanner, H, Beer, J, Bütikofer, J, Crowley, TJ, Cubasch, U, Flückiger, J, Goose, H, Grosjean, M, Joos, F, Kaplan, JO, Küttel, M, Müller, SA, Prentice, IC, Solomina, O, Stocker, TF, Tarasov, P, Wagner, M, Widmann, M. 2008. Mid- to Late Holocene climate change: an overview. Quaternary Science Reviews 27:1791–828.Google Scholar