Skip to main content Accessibility help


  • Algirdas Pabedinskas (a1), Evaldas Maceika (a1), Justina Šapolaitė (a1), Žilvinas Ežerinskis (a1), Laurynas Juodis (a1), Laurynas Butkus (a1), Laurynas Bučinskas (a1) and Vidmantas Remeikis (a1)...


A radiocarbon (14C) activity analysis in the tree rings around Ignalina nuclear power plant (INPP) has been carried out with the aim to test the hypothesis to use 14C tree-ring analysis data as a tool for the reconstruction of gaseous releases from NPP to the environment. The INPP has been in decommissioning state since the end of 2009. Tree-ring samples for 14C analysis were collected 7 yr after final power unit shutdown from the INPP vicinity. The samples from 5 sampling locations were collected, prepared and measured using the Single Stage Accelerator Mass Spectrometer (SSAMS). Data analysis represents observable Ignalina NPP influence by 14C increase up to 15 pMC (percent modern carbon) in tree rings. Good correlations of the 14C concentrations and wind direction were obtained. The main purpose of this article was to match 14C measurement data along with the atmospheric dispersion modeling of emissions in order to retrospectively characterize the emission source.


Corresponding author

*Corresponding author. Email:


Hide All

Selected Papers from the 23rd International Radiocarbon Conference, Trondheim, Norway, 17–22 June, 2018



Hide All
Briggs, GA. 1973. Diffusion estimation for small emissions. Preliminary report. U.S. Department of Energy.
Donahue, D, Linick, T, Jull, A. 1990. Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measuments. Radiocarbon 32:135142.
European Commission. 2016. Radioactive discharges database.
Ežerinskis, Ž, Šapolaitė, J, Pabedinskas, A, Juodis, L, Garbaras, A, Maceika, E, Druteikienė, R, Lukauskas, D, Remeikis, V. 2018. Annual variations of 14C concentration in the tree rings in the vicinity of Ignalina nuclear power plant. Radiocarbon 60:12271236.
Gaiko, VB, Korablev, NA, Solovev, EN, Trosheva, TI, Shamov, VP, Umanets, MP, Shcherbina, VG. 1985. Discharge of 14C by nuclear power stations with RBMK-1000 reactors. Soviet Atomic Energy 59:703705.
Gifford, FA. 1960. Atmospheric dispersion calculations using the generalized Gaussian plume model. Nuclear Safety:5659.
IAEA. 2001. Generic models for use in assessing the impact of discharges of radioacive substances to the environment. Safety Reports Series 19.
Janovics, R, Kern, Z, Güttler, D, Wacker, L, Barnabás, I, Molnár, M. 2017. Radiocarbon impact on a nearby tree of a light-water VVER-type nuclear power plant, Paks, Hungary. Radiocarbon 55:826832.
Kunz, C. 1985. Carbon-14 discharge at three light-water reactors. Health Physics 49:2535.
LAND 42. 2007. Description of the procedure for issuing permits for radionuclide discharges to the environment from nuclear facilities, restrictions and regulations. Ministry of Environment, Republic of Lithuania.
Mažeika, J, Petrošius, R, Pukienė, R. 2008. Carbon-14 in tree rings and other terrestrial samples in the vicinity of Ignalina Nuclear Power Plant, Lithuania. Journal of Environmental Radioactivity 99:238247.
Motiejūnas, S, Nedveckaitė, T, Filistovič, V, Mažeika, J, Morkeliūnas, L, Maceika, E. 1999. Assessment of environment impact due to radio- active effluents from Ignalina NPP. Environmental and Chemical Physics:818.
Němec, M, Wacker, L, Hajdas, I, Gäggeler, H. 2010. Alternative methods for cellulose preparation for AMS measurement. Radiocarbon 52:13581370.
Povinec, P, Šivo, A, Ješkovský, M, Svetlik, I, Richtáriková, M, Kaizer, J. 2015. Radiocarbon in the atmosphere of the Žlkovce monitoring station of the Bohunice NPP: 25 Years of continuous monthly measurements. Radiocarbon 57:355362.
Povinec, P, Šivo, A, Šimon, J, Holý, K, Chudý, M, Richtáriková, M, Morávek, J. 2008. Impact of the Bohunice Nuclear Power Plant on atmospheric radiocarbon. Applied Radiation and Isotopes 66:16861690.
Remeikis, V, Juodis, L, Plukis, A, Vyčinas, L, Rožkov, A, Jasiulionis, R. 2012. Indirect assessment of 135Cs activity in the ventilation system of the Ignalina NPP RBMK-1500 reactor. Nuclear Engineering and Design 242:420424.
Roussel-Debet, S, Gontier, G, Siclet, F, Fournier, M. 2006. Distribution of carbon 14 in the terrestrial environment close to French nuclear power plants. Journal of Environmental Radioactivity 87:246259.
Stenström, K, Erlandsson, B, Mattsson, S, Thornberg, C, Hellborg, R, Kiisk, M, Persson, P, Skog, G. 2000. 14C emission from Swedish nuclear power plants and its Eeffect on the 14C levels in the environment:144.
Stenström, K, Thornberg, C, Erlandsson, B, Hellborg, R, Mattsson, S, Perssoni, P. 1998. 14C levels in the vicinity of two Swedish nuclear power plants and two “clean-air” sites in southernmost Sweden. Radiocarbon 40:433438.
Van der Stricht, S, Janssens, A. 2001. Radioactive effluents from nuclear power stations and nuclear fuel reprocessing plants in the European Union. Luxembourg: Office for Official Publications of the European Communities.
Stuiver, M. 1983. International agreements and the use of the new oxalic acid standard. Radiocarbon 25:793795.
Stuiver, M, Polach, H. 1977. Discussion reporting of 14C data. Radiocarbon 19:355363.
Suess, HE. 1955. Radiocarbon concentration in modern wood. American Association for the Advancement of Science 122:415417.
Svetlik, I, Fejgl, M, Turek, K, Michalek, V, Tomaskova, L. 2012. 14C studies in the vicinity of the Czech NPPs. Journal of Radioanalytical and Nuclear Chemistry 292:689695.
Turnbull, JC, Keller, ED, Norris, MW, Wiltshire, RM. 2017. Atmospheric monitoring of carbon capture and storage leakage using radiocarbon. International Journal of Greenhouse Gas Control 56:93101.
U1DP0 EIAR. 2007. INPP Unit 1 Decommissioning Project for Defuelling Phase Environmental Impact Assessment Report.
VATESI. 2009. Nuclear energy in Lithuania: Nuclear safety. Inspectorate of Nuclear Power Safety, Lithuania.
Veres, M, Hertelendi, E, Uchrin, G, Csaba, E, Barnabás, I, Ormai, P, Volent, G, Futó, I. 1995. Concentration of radiocarbon and its chemical forms in gaseous effluents, environmental air, nuclear waste and primary water of a pressurized water reactor power plant in Hungary. Radiocarbon 37:497504.
Wacker, L, Němec, M, Bourquin, J. 2010. A revolutionary graphitisation system: fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research 268:931934.
Xu, S, Cook, GT, Cresswell, AJ, Dunbar, E, Freeman, SPHT, Hastie, H, Hou, X, Jacobsson, P, Naysmith, P, Sanderson, DCW, Tripney, BG, Yamaguchi, K. 2016. 14C levels in the vicinity of the Fukushima Dai-ichi Nuclear Power Plant prior to the 2011 accident. Journal of Environmental Radioactivity 157:9096.
Yim, M-S, Caron, F. 2006. Life cycle and management of carbon-14 from nuclear power generation. Progress in Nuclear Energy 48:236.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed