Skip to main content
×
×
Home

Can we Use Calcined Bones for 14C Dating the Paleolithic?

  • Antoine Zazzo (a1), Matthieu Lebon (a2) (a3), Laurent Chiotti (a4), Clothilde Comby (a5), Emmanuelle Delqué-Količ (a5), Roland Nespoulet (a4) and Ina Reiche (a2) (a3)...
Abstract

This work aims to test the reliability of calcined bones for radiocarbon dating of the Paleolithic. Fifty-five calcined bone samples coming from Aurignacian and Gravettian layers at Abri Pataud (Dordogne, France) were selected based on their macroscopic features. For each sample, the heating state was estimated on the basis of bone crystallinity (splitting factor [SF] using FTIR) and δ13C value. Twenty-seven bone samples (3 unburnt and 24 calcined) from 5 different levels were prepared for 14C dating. The majority (15/24) of the calcined samples had to undergo a sulfix treatment prior to graphitization, probably due to the presence of cyanamide ion in these samples. The comparison between our results and recently published dates on bone collagen for the same levels shows that unburned bone apatite is systematically too young, while a third of the calcined bones fall within or very near the range of expected age. No clear correlation was found between 14C age offset and δ13C value or SF. Most of the sulfixed samples (14/16) yielded ages that were too young, while almost all of the non-sulfixed samples (8/9) gave ages similar or <0.2 pMC from the expected minimum age. Although preliminary, these results suggest that sulfix should be avoided if possible and that clean CO2 gas from well-calcined Paleolithic bones can provide reliable 14C ages.

Copyright
Corresponding author
Corresponding author. Email: zazzo@mnhn.fr.
References
Hide All
Chadefaux, C, Reiche, I. 2009. Archaeological bone from the macro- to nanoscale: heat-induced modifications at low temperatures. Journal of Nano Research 8:157–72.
Cottereau, E, Arnold, M, Moreau, C, Baqué, D, Bavay, D, Caffy, I, Comby, C, Dumoulin, J-P, Hain, S, Perron, M, Salomon, J, Setti, V. 2007. Artemis, the new 14C AMS at LMC14 in Saclay, France. Radiocarbon 49(2):291–9.
De Mulder, G, Van Strydonck, M, Boudin, M, Leclercq, W, Paridaens, N, Warmenbol, E. 2007. Re-evaluation of the Late Bronze Age and Early Iron Age chronology of the western Belgian urnfields based on 14C dating of cremated bones. Radiocarbon 49(2):499514.
De Mulder, G, Van Strydonck, M, Boudin, M. 2009. The impact of cremated bone dating on archaeological chronology of the low countries Radiocarbon 51(2):579600.
De Mulder, G, Van Strydonck, M, Annaert, R, Boudin, M. 2012. A Merovingian surprise: early Medieval radiocarbon dates on cremated bone (Borsbeek, Belgium). Radiocarbon 54(3–4):581–8
Dowker, SEP, Elliott, JC. 1979. Infrared absorption bands from NCO and NCN2- in heated carbonate-containing apatites prepared in the presence of NH4 + ions. Calcified Tissue International 29(1):177–8.
Habelitz, S, Pascual, L, Duran, A. 1999. Nitrogen-containing apatite. Journal of the European Ceramic Society 19(15):2685–94.
Habelitz, S, Pascual, L, Duran, A. 2001. Transformation of tricalcium phosphate into apatite by ammonia treatment. Journal of Materials Science 36(17):4131–5.
Hammer, Ø, Harper, DAT, Ryan, PD. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1). 9 p. URL: http://palaeo-electronica.org/2001_1/past/issuel_01.htm.
Henry-Gambier, D, Nespoulet, R Chiotti, L, Drucker, D, Lenoble, A. 2013. Chapitre 4 – Datations. In: Nespoulet, R, Chiotti, L, Henry-Gambier, D, editors. Le Gravettien Final de l'Abri Pataud (Dordogne, France). Fouilles et Etudes 2005–2009. BAR International Series 2458. Oxford: Archaeopress. p 4350.
Higham, TFG, Jacobi, R, Basell, L, Bronk Ramsey, C, Chiotti, L, Nespoulet, R. 2011. Precision dating of the Palaeolithic: a new radiocarbon chronology for the Abri Pataud (France), a key Aurignacian sequence. Journal of Human Evolution 61(5):549–63.
Holden, JL, Phakey, PP, Clement, JG. 1995. Scanning electron microscope observations of incinerated human femoral bone: a case study. Forensic Science International 74(1–2):1728.
Hüls, CM, Erlenkeuser, H, Nadeau, M-J, Grootes, PM, Andersen, N. 2010. Experimental study on the origin of cremated bone apatite carbon. Radiocarbon 52(2):587–99.
Lanting, JN, Aerts-Bijma, AT, van der Plicht, J. 2001. Dating cremated bone. Radiocarbon 43(2A):249–54.
Lebon, M, Reiche, I, Bahain, JJ, Chadefaux, C, Moigne, AM, Fröhlich, F, Sémah, F, Schwarcz, HP, Falguères, C. 2010. New parameters for the characterization of diagenetic alterations and heat-induced changes of fossil bone mineral using Fourier transform infrared spectrometry. Journal of Archaeological Science 37(9):2265–76.
Lenoble, A, Agsous, S. 2012. Abri Pataud – sédimentogenèse, paléopédologie, chronologie des dépôts. In: Bertran, P, Lenoble, A, editors. Quaternaire continental d'Aquitaine: un point sur les travaux récents. AFEQASF. 160 p.
Movius, HL. 1977. Excavation of the Abri Pataud, Les Eyzies (Dordogne): Stratigraphy. American School of Prehistoric Research, 31. Cambridge: Peabody Museum, Harvard University. 167 p.
Olsen, J, Heinemeier, J, Bennike, P, Krause, C, Hornstrup, KM, Thrane, H. 2008. Characterisation and blind testing of radiocarbon dating of cremated bone. Journal of Archaeological Science 35(3):791800.
Pasteris, JD, Wopenka, B, Freeman, JJ, Rogers, K, Valsami-Jones, E, van der Houwen, JAM, Silva, MJ. 2004. Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials 25(2):229–38.
Person, A, Bocherens, H, Mariotti, A, Renard, M. 1996. Diagenetic evolution and experimental heating of bone phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 126(1–2):135–49.
Reiche, I. 2010. Heating and diagenesis-induced heterogeneiteis in the chemical composition and structure of archaeological bones from the Neolithic site of Chalain 10 (Jura, France). Palethnologie 2:129–44.
Rozanski, R, Stichler, W, Gonfiantini, R, Scott, EM, Beukens, RP, Kromer, B, van der Plicht, J. 1992. The IAEA 14C Intercomparison Exercise 1990. Radiocarbon 34(3):506–19.
Shipman, P, Foster, G, Schoeninger, M. 1984. Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage. Journal of Archaeological Science 11(4):307–25.
Théry-Parisot, I. 1998. Économie du combustible et paléoécologie en contexte glaciaire et périglaciaire. Paléolithique moyen et supérieur du Sud de la France (expérimentation, anthracologie, taphonomie) [PhD thesis]. Lille: Atelier national de Reproduction des Thèses. 499 p.
Weiner, S, Bar-Yosef, O. 1990. States of preservation of bones from prehistoric sites in the Near East: a survey. Journal of Archaeological Science 17(2):187–96.
Van Strydonck, M, Boudin, M, De Mulder, G. 2010. The origin of the carbon in bone apatite of cremated bones. Radiocarbon 52(2–3):578–86.
Veil, S, Breest, K, Grootes, P, Nadeau, M-J, Hüls, M. 2012. A 14 000-year-old amber elk and the origins of northern European art. Antiquity 86(333):660–73.
Zazzo, A, Saliège, J-F. 2011. Radiocarbon dating of biological apatites: a review. Palaeogeography, Palaeoclimatology, Palaeoecology 310(1–2):5261.
Zazzo, A, Saliège, J-F, Person, A, Boucher, H. 2009. Radiocarbon dating of cremated bones: Where does the carbon come from? Radiocarbon 51(2):601–11.
Zazzo, A, Saliège, J-F, Lebon, M, Lepetz, S, Moreau, C. 2012. Radiocarbon dating of calcined bones: insights from combustion experiments under natural conditions. Radiocarbon 54(3–4):855–66.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Radiocarbon
  • ISSN: 0033-8222
  • EISSN: 1945-5755
  • URL: /core/journals/radiocarbon
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed