Skip to main content
×
×
Home

Carbon-14 release and speciation from carbon steel in highly alkaline conditions

  • Frank Druyts (a1), Sébastien Caes (a1) and Peter Thomas (a1)
Abstract

The release and the speciation of carbon species from irradiated JRQ carbon steel samples, representative of the reactor pressure vessel of Belgian nuclear power plants, were studied in a saturated portlandite aqueous solution, relevant for the Belgian Supercontainer design, as perceived for the geological disposal of high-level nuclear waste. To achieve this, we performed simple immersion and potentiostatic corrosion tests. In addition, the corrosion rate (which determines the 14C release) was estimated by measuring the release of 60Co. Gas chromatography showed that during the static corrosion test, the carbonaceous species methane, carbon dioxide, ethene, and ethane were produced. Under the hypothesis that all the carbon released from the JRQ steel was transformed into carbon-base gaseous compounds, this corresponds to a corrosion rate of approximately 100 nm/yr, which is in good agreement with literature data.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Carbon-14 release and speciation from carbon steel in highly alkaline conditions
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Carbon-14 release and speciation from carbon steel in highly alkaline conditions
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Carbon-14 release and speciation from carbon steel in highly alkaline conditions
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-ncsa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Pressmust be obtained for commercial re-use.
Corresponding author
*Corresponding author. Email: fdruyts@sckcen.be.
References
Hide All
Diomidis, N. 2014. Scientific basis for the production of gas due to corrosion in a deep geological repository. NAGRA, Switzerland, report NAB 14-21.
Fujiwara, A. 2002. Gas generation by steel corrosion under reductive conditions – Continuous measurement test, presented at the GASNET Workshop, 12–14 November 2002, Cologne, Germany.
Grauer, R, Knecht, B, Kreis, P, Simpson, JP. 1991. The long term corrosion rate of passive iron in anaerobic alkaline solutions, Werkstoffe und Korrosion 42:637642.
IAEA. 2001. Reference manual on the IAEA JRQ correlation monitor steel for irradiation damage studies, IAEA, Austria, IAEA-TECDOC-1230.
IAEA. 2009. Integrity of reactor pressure vessels in nuclear power plants: assessment of irradiation embrittlement effects in reactor pressure vessel steels, IAEA, Austria, IAEA Nuclear Energy Series No. NP-T-3.11.
Kursten, B. 2014. Uniform corrosion rate data of carbon steel in cementitious environments relevant to the Supercontainer design, SCK∙CEN, Belgium, State-of-the-art report as of December 2013, SCK∙CEN report no. SCK∙CEN-ER-94.
Mihara, M, Nishimura, T, Wada, R, Honda, A. 2002. Estimation on gas generation and corrosion rates of carbon steel, stainless steel and zircaloy in alkaline solutions under low oxygen condition. JNC Technical Review 15:91101.
Smart, NR, Rance, AP, Winsley, RJ, Fennell, PAH, Reddy, B, Kursten, B. 2009. The effect of irradiation on the corrosion of carbon steel in alkaline media. In: L’Hostis V, Gens R, Gallé C, editors. Long-Term Performance of Cementitious Barriers and Reinforced Concrete in Nuclear Power Plants and Waste Management. NUCPERF 2009, RILEM proceedings PRO 64. p 45–52.
Tait, WS. 1994. An introduction to electrochemical corrosion testing for practicing engineers and scientists. USA, Pair O Docs Publications.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Radiocarbon
  • ISSN: 0033-8222
  • EISSN: 1945-5755
  • URL: /core/journals/radiocarbon
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed