Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-19T05:32:10.074Z Has data issue: false hasContentIssue false

What Is the Carbon Origin of Early-Wood?

Published online by Cambridge University Press:  19 November 2018

Sabrina G K Kudsk*
Affiliation:
Institute for Geoscience, Aarhus University, Høegh-Guldbergs Gade 2, DK-8000 Aarhus C, Denmark
Jesper Olsen*
Affiliation:
Aarhus AMS Centre (AARAMS), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
Lasse N Nielsen
Affiliation:
Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
Alexandra Fogtmann-Schulz
Affiliation:
Institute for Geoscience, Aarhus University, Høegh-Guldbergs Gade 2, DK-8000 Aarhus C, Denmark
Mads F Knudsen
Affiliation:
Institute for Geoscience, Aarhus University, Høegh-Guldbergs Gade 2, DK-8000 Aarhus C, Denmark
Christoffer Karoff
Affiliation:
Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
*
*Corresponding authors. Email: sgbn@geo.au.dk and jesper.olsen@phys.au.dk.
*Corresponding authors. Email: sgbn@geo.au.dk and jesper.olsen@phys.au.dk.

Abstract

Substantial amounts of annual radiocarbon (14C) data have recently been produced with the purpose of increasing the time resolution of 14C records used for constructing the calibration curve and for studying the occurrence of abrupt cosmic-ray events. In this study, we investigate if it is possible to resolve sub-annual scale changes in the atmospheric 14C content by measuring radiocarbon in early-wood and late-wood fractions from Danish oak. The tree-ring samples span the period 1954–1970 CE, hereby covering the peak of the bomb pulse. A least squares test comparing the atmospheric 14C content and the new sub-annual 14C record from Danish tree rings reveals that by measuring early-wood and late-wood fractions, it may be possible to resolve sub-annual variations in past atmospheric 14C levels.

Type
Trees
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2nd Radiocarbon in the Environment Conference, Debrecen, Hungary, 3–7 July 2017

References

REFERENCES

Beramendi-Orosco, LE, Gonzalez-Hernandez, G, Villanueva-Diaz, J, Santos-Arevalo, FJ, Gomez-Martinez, I, Cienfuegos-Alvarado, E, Morales-Puente, P, Urrutia-Fucugauchi, J. 2010. Modern radiocarbon levels for Northeastern Mexico derived from tree rings: A comparison with Northern Hemisphere zones 2 and 3 curves. Radiocarbon 52(3):907914.Google Scholar
Carbone, MS, Czimczik, CI, Keenan, TF, Murakami, PF, Pederson, N, Schaberg, PG, Xu, X, Richardson, AD. 2013. Age, allocation and availability of nonstructual carbon in mature red maple trees. New Phytologist 200:11451155.Google Scholar
Dee, MW, Pope, BJS. 2016. Anchoring historical sequences using a new source of astro-chronological tie-points. Proceedings of the Royal Society A – Mathematical Physical and Engineering Sciences 472(2192):11.Google Scholar
Fogtmann-Schulz, A, Østbø, SM, Nielsen, SGB, Olsen, J, Karoff, C, Knudsen, MF. 2017. Cosmic-ray event in 994 CE recorded in radiocarbon from Danish Oak. Geophysical Research Letters.Google Scholar
Güttler, D, Adolphi, F, Beer, J, Bleicher, N, Boswijk, G, Christl, M, Hogg, A, Palmer, J, Vockenhuber, C, Wacker, L, Wunder, J. 2015. Rapid increase in cosmogenic 14C in AD 775 measured in New Zealand kauri trees indicates short-lived increase in 14C production spanning both hemispheres. Earth and Planetary Science Letters 411:290297.Google Scholar
Graven, HD, Guilderson, TP, Keeling, RF. 2012. Observations of radiocarbon in CO2 at seven global sampling sites in the Scripps flask network: Analysis of spatial gradient and seasonal cycles. Journal of Geophysical Research – Atmospheres 117(D2):D02303.Google Scholar
Hua, Q, Barbetti, M, Rakowski, AZ. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55(4):20592072.Google Scholar
Hultén, E. 1971. Atlas över växternas utbredning i Norden. Generalstabens litografiska anstalts förlag, Stockholm.Google Scholar
Jull, AJT, Panyushkina, IP, Lange, TE, Kukarskih, VV, Myglan, VS, Clark, KJ, Salzer, MW, Burr, GS, Leavitt, SW. 2014. Excursions in the 14C record at A.D. 774–775 in tree rings from Russia and America. Geophysical Research Letters 41(8):30043010.Google Scholar
Ladefoged, K. 1952. The periodicity of wood formation. [Det Kongelige Danske Videnskabernes Selskab.] Biologiske Skrifter 7(3).Google Scholar
Miyahara, H, Masuda, K, Muraki, Y, Kitagawa, H, Nakamura, T. 2006. Variation of solar cyclicity during the Spoerer Minimum. Journal of Geophysical Research-Space Physics 111(A3).Google Scholar
Miyake, F, Nagaya, K, Masuda, K, Nakamura, T. 2012. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486(7402):240242.Google Scholar
Miyake, F, Masuda, K, Nakamura, T. 2013. Another rapid event in the carbon-14 content of tree rings. Nature Communications 4.Google Scholar
Olsen, J, Tikhomirov, D, Grosen, C, Heinemeier, J, Klein, M. 2017. Radiocarbon analysis on the new AARAMS 1MV Tandetron. Radiocarbon 59(3):905913.Google Scholar
Olsson, IU, Possnert, G. 1992. 14C activity in different sections and chemical-fractions of oak tree rings, AD 1938-1981. Radiocarbon 34(3):757767.Google Scholar
Pilcher, JR. 1995. Biological considerations in the interpretation of stable isotope ratios in oak tree-rings. In: Frinzel B, Stauffer B, Weiss MM, editors. Paläoklimaforschung/Paleoclimate Research 15. European Science Foundation, Strasbourg, France (1993). p 157161.Google Scholar
Rakowski, AZ, Nakamura, T, Pazdur, A, Meadows, J. 2013. Radiocarbon concentration in annual tree rings from the Salamanca region, western Spain. Radiocarbon 55(2–3):15331540.Google Scholar
Rakowski, AZ, Krąpiec, M, Huels, M, Pawlyta, J, Dreves, A, Meadows, J. 2015. Increase of radiocarbon concentration in tree rings from Kujawy (SE Poland) around AD 774–775. Nuclear Instruments and Methods in Physics Research B 361:564568.Google Scholar
Reimer, PJ, Brown, TA, Reimer, RW. 2004. Discussion: Reporting and calibration of post-bomb 14C data. Radiocarbon 46(3):12991304.Google Scholar
Richardson, AD, Carbone, MS, Keenan, TF, Czimczik, CI, Hollinger, DY, Murakami, P, Schaberg, PG, Xu, X. 2013. Seasonal dynamics and age of stemwood nonstructual carbohydrates in temperate forest trees. New Phytologist 197:850861.Google Scholar
Schweingruber, FH. 1988. Tree Rings – Basics and Applications of Dendrochronolgy. Kluwer Academic Publishers.Google Scholar
Southon, JR, Magana, AL. 2010. A comparison of cellulose extraction and ABA pretreatment methods for AMS 14C dating of ancient wood. Radiocarbon 52(3):13711379.Google Scholar
Speer, JH. 2010. Fundamentals of Tree-Ring Research. University of Arizona Press. 509 p.Google Scholar
Tauber, H. 1960. Post-Bomb Rise in Radiocarbon Activity in Denmark. Science 131(3404):921922.Google Scholar
Wang, FY, Yu, H, Zou, YC, Dai, ZG, Cheng, KS. 2017. A rapid cosmic-ray increase in BC 3372–3371 from ancient buried tree rings in China. Nature Communications 8(1):1487.Google Scholar
Xu, S, Cook, GT, Cresswell, AJ, Dunbar, E, Freeman, S, Hastie, H, Hou, XL, Jacobsson, P, Naysmith, P, Sanderson, DCW. 2015. Radiocarbon concentration in modern tree rings from Fukushima, Japan. Journal of Environmental Radioactivity 146:6772.Google Scholar