Skip to main content
×
Home
    • Aa
    • Aa

La controverse sur les effets des faibles doses de rayonnements ionisants et la relation linéaire sans seuil

  • M. Tubiana (a1), R. Masse (a2), F. De Vathaire (a3), D. Averbeck (a4) and A. Aurengo (a5)...
Abstract

Si la publication 99 de la CIPR et le BEIR VII recommandent de maintenir l’usage d’une relation linéaire sans seuil (RLSS) pour estimer l’excès de risque relatif de cancer lié à de faibles doses de rayonnements ionisants (RI), le rapport conjoint de l’Académie des sciences et de l’Académie de médecine (2005) conclut qu’elle conduit à une forte surestimation des risques des faibles et des très faibles doses. Les fondements de la RLSS sont remis en question par de nouvelles données biologiques et de l’expérimentation animale qui montrent que la défense contre les RI met en jeu le micro-environnement cellulaire et le système immunitaire, et que les mécanismes de défense contre les faibles doses de RI sont différents et plus efficaces. Ces cellules lésées par une irradiation à faible dose sont éliminées ; la réparation s’impose à forte dose pour préserver les fonctions tissulaires. Les organismes pluricellulaires réalisent ainsi une défense au moindre coût et au moindre risque contre les RI et les dégâts du métabolisme oxydatif. Les différences entre les défenses contre les faibles et fortes doses sont particulièrement nettes dans le cas de contamination par des émetteurs alpha qui montrent chez l’homme et l’animal des effets à seuil de plusieurs grays. Ces différences remettent en question les résultats des études épidémiologiques qui, pour des raisons de puissance statistique, estiment les risques en fusionnant des données obtenues pour des gammes de doses très étendues, ce qui sous entend implicitement que les mécanismes de cancérogenèse sont similaires quelle que soit la dose. L’estimation des risques des faibles doses de RI doit reposer sur des études spécifiquement limitées aux faibles doses, avec une évaluation précise de facteurs de confusion potentiels. La synthèse des études de cohorte pour lesquelles on dispose des coefficients de risque fondés sur les seules doses inférieures à 100 mSv chez l’adulte ne montre pas d’excès de risque relatif significatif, ni pour les tumeurs solides ni pour les leucémies.

Si la publication 99 de la CIPR et le BEIR VII recommandent de maintenir l’usage d’une relation linéaire sans seuil (RLSS) pour estimer l’excès de risque relatif de cancer lié à de faibles doses de rayonnements ionisants (RI), le rapport conjoint de l’Académie des sciences et de l’Académie de médecine (2005) conclut qu’elle conduit à une forte surestimation des risques des faibles et des très faibles doses. Les fondements de la RLSS sont remis en question par de nouvelles données biologiques et de l’expérimentation animale qui montrent que la défense contre les RI met en jeu le micro-environnement cellulaire et le système immunitaire, et que les mécanismes de défense contre les faibles doses de RI sont différents et plus efficaces. Ces cellules lésées par une irradiation à faible dose sont éliminées ; la réparation s’impose à forte dose pour préserver les fonctions tissulaires. Les organismes pluricellulaires réalisent ainsi une défense au moindre coût et au moindre risque contre les RI et les dégâts du métabolisme oxydatif. Les différences entre les défenses contre les faibles et fortes doses sont particulièrement nettes dans le cas de contamination par des émetteurs alpha qui montrent chez l’homme et l’animal des effets à seuil de plusieurs grays. Ces différences remettent en question les résultats des études épidémiologiques qui, pour des raisons de puissance statistique, estiment les risques en fusionnant des données obtenues pour des gammes de doses très étendues, ce qui sous entend implicitement que les mécanismes de cancérogenèse sont similaires quelle que soit la dose. L’estimation des risques des faibles doses de RI doit reposer sur des études spécifiquement limitées aux faibles doses, avec une évaluation précise de facteurs de confusion potentiels. La synthèse des études de cohorte pour lesquelles on dispose des coefficients de risque fondés sur les seules doses inférieures à 100 mSv chez l’adulte ne montre pas d’excès de risque relatif significatif, ni pour les tumeurs solides ni pour les leucémies.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      La controverse sur les effets des faibles doses de rayonnements ionisants et la relation linéaire sans seuil
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      La controverse sur les effets des faibles doses de rayonnements ionisants et la relation linéaire sans seuil
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      La controverse sur les effets des faibles doses de rayonnements ionisants et la relation linéaire sans seuil
      Available formats
      ×
Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M. Andersson , H.H. Storm (1992) Cancer incidence among Danish thorotrast-exposed patiens, J. Natl. Cancer Inst. 84, 1318-1325.

D. Averbeck (2000) Mecanismes de réparation et mutagénèse radioinduite chez les eucaryotes supérieurs, Cancer Radiother. 4, 1-20.

D. Averbeck , L. Testard , D. Boucher (2006) Changing views on ionizing radiation-induced cellular effects, Int. J. Low Rad. 3, 117-134.

C.J. Bakkenist , M.B. Kastan (2004) Initiating cellular stress responses, Cell 118, 9-17.

M.H. Barcellos-Hoff (2005) Integrative Radiation Carcinogenesis: interactions between cell and tissue responses to DNA damage, Sem. Cancer Biol. 15, 138-148.

J. Bartkova , N. Rezaei , M. Liontos et al. (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints, Nature 444, 633-637.

P.A. Beachy , S.S. Karhadhar , D. Berman (2004) Tissue repair and stem cell renewal in carcinogenesis, Nature 432, 324-331.

O.V. Belyakov , M. Folkard , C. Mothersill , K.M. Prise , B.D. Michael (2006) Bystander induced differentiation: a major response to targeted irradiation of a urothelial explant model, Mutat. Res. 597, 43-49.

A. Berrington , S.C. Darby , H.A. Weiss , R. Doll (2001) 100 years of observation on British Radiologists: mortality from cancer and other causes 1987-1997, Br. J. Radiology 74, 507-519.

A. Berrington de Gonzalez , S. Darby (2004) Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries, Lancet 363, 345-351.

N.A. Bhowmick , A. Chytil , D. Plieth , A.E. Gorska , N. Dumont , S. Shappell , M.K. Washington , E.G. Neilson , H.L. Moses (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia, Science 303, 775-777.

K. Bishay , K. Ory , M.F. Olivier , J. Lebeau , C. Levalois , S. Chevillard (2001) DNA damage-related RNA expression to assess individual sensitivity to ionizing radiation, Carcinogenesis 22, 1179-1183.

M. Blettner , H. Zeeb , A. Auviven et al. (2003) Mortality from cancer and other causes among male airline cockpit in Europe, Int. J. Cancer 106, 946-952.

J.D. Boice , D. Preston , F.G. Davis , R.R. Monson (1991a) Frequent chest X-ray fluoroscopy and breast cancer incidence among tuberculosis patients in Massachusetts, Radiat. Res. 125, 214-222.

J.D.J. Boice , M.M. Morin , A.G. Glass et al. (1991b) Diagnostic X-ray procedures and risk of leukemia, lymphoma, and multiple myeloma, JAMA 265, 1290-1294.

J.D.J. Boice , G. Engholm , R.A. Kleinerman et al. (1998) Radiation dose and second cancer risk in patients treated for cancer of the cervix, Radiat. Res. 116, 3-55.

D. Boucher , J. Hindo , D. Averbeck (2004) Increased repair of gamma-induced DNA double-strand breaks at lower dose-rate in CHO cells, Can. J. Physiol. Pharmacol. 82, 125-132.

D.E. Brash (1997) Sunlight and the onset of skin cancers, Trend. Genet. 13, 410-414.

A. Bravard , C. Luccioni , E. Moustacchi , O. Rigaud (1999) Contribution of antioxydant enzymes in the adaptative response to ionizing radiation of human lymphoblasts, Int. J. Radiat. Biol. 75, 639-645.

J. Breckow (2006) Linear-no-threshold is a radiation-protection standard rather than a mechanistic effect model, Radiat. Environ. Biophys. 44, 257-260.

D.J. Brenner , R. Doll , D.T. Goodhead , E.J. Hall , C.E. Land , J.B. Little , J.H. Lubin , D.L. Preston , R.J. Preston , J.S. Puskin , E. Ron , R.K. Sachs , J.M. Samet , R.B. Setlow , M. Zaider (2003) Cancer risk attributable to low doses of ionizing radiation: Assessing what we really know, Proc. Natl. Acad. Sci. USA 100, 13761-13766.

D.J. Brenner , R.K. Sachs (2006) Estimating radiation-induced cancer risks at very low doses: rationale for using a linear no-threshold approach, Radiat. Environ. Biophys. 44, 253-256.

E. Cardis , E.S. Gilbert , L. Carpenter et al. (1995) Effects of low dose rates of external ionizing radiation: cancer mortality among nuclear industry workers in three countries, Radiat. Res. 142, 117-132.

E. Cardis , A. Kesminienne , V. Ivanov et al. (2005a) Risk of thyroid cancer after exposure to 131I in childhood, J. Nat. Cancer Inst. 97, 724-732.

E. Cardis , G. Howe , E. Ron , V.G. Bebeshko , T. Bogdanova , A. Bouville et al. (2006) Cancer consequences of the Chernobyl Accidet: 20 Years After, J. Radiol. Prot. 26, 125-137.

B.A. Carnes , P.G. Groer , T.J. Kotec (1997) Radium dial workers: Issues concerning dose response and modeling, Radiat. Res. 147, 707-714.

F. Castronovo (1999) Teratogen update: Radiation and Chernobyl, Teratology 60, 100-106.

A. Chalmers , P. Johnston , M. Woodcock , M. Joiner , B. Marples (2004) PARP-1, PARP-2, and the cellular response to low doses of ionizing radiation, Int. J. Radiat. Oncol. Biol. Phys. 58, 410-419.

S.J. Collis , J.M. Schwaninger , A.J. Ntambi , T.W. Keller , W.G. Nelson , L.E. Dillehay , T.L. Deweese (2004) Evasion of early cellular response mechanisms following low level radiation induced DNA damage, J. Biol. Chem. 279, 49624-49632.

S. Darby , D. Hill , A. Auvinene , J.M. Barros-Dios et al. (2005) Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies, Brit. Med. J. 330, 223-227.

S.M. De Toledo , N. Asaad , P. Venkatachalam , L. Li , R.W. Howell , D.R. Spitz , E.I. Azzam (2006) Adaptive responses to low-dose/low-dose-rate gamma rays in normal human fibroblasts: the role of growth architecture and oxidative metabolism, Radiat. Res. 166, 849-857.

F. de Vathaire , C. Hardiman , A. Shamsalidin et al. (2000) Thyroid carcinoma following irradiation for a first cancer during childhood, Arch. Inter. Med. 159, 2713-2719.

R.R. Delongchamp , K. Mabushi , Y. Yasuhiko et al. (1997) Cancer mortality among atomic bomb survivors exposed in utero or as young chidren, Radiat. Res. 147, 385-395.

P.W. Dickman , L.E. Holm , G.R. Lundell , J.D. Boice , P. Hall (2003) Thyroid cancer risk after thyroid examination with 131I: a population based cohort study in Sweden, Int. J. Cancer 106, 580-587.

R. Doll , R. Wakeford (1997) Risk of childhood cancer from fetal irradiation, Br. J. Radiol. 70, 130-139.

M.M. Doody , J.S. Mandel , J.H. Lubin , J.D. Boice (1998) Mortality among USA radiologic technologists 1926-1990, Cancer Causes Control 9, 67-75.

M.M. Doody , J.E. Lonstein , M. Stovall , D.G. Hacker , N. Luckyanov , C.E. Land (2000) U.S. Scoliosis Cohort Study Collaborators. Breast cancer mortality following diagnostic X-rays: Findings from the U.S. Scoliosis Cohort Study, Spine 25, 2052-2063.

P. Duport (2003) A database of cancer induction by low dose radiation in mammals: overview and initial observations, Int. J. Low Radiation 1, 120-131.

S. Euvrard , J. Kanitakis , D. Claudis (2003) Skin cancers after organ transplantation, N. Engl. J. Med. 348, 1681-1691.

N. Franco , J. Lamartine , V. Frouin et al. (2005) Low-Dose Exposure to γ rays induces specific gene regulations in normal human keratinocytes, Radiat. Res. 163, 623-635.

J.A. Franklyn , L. Maisonneuve , M. Sheppard , T. Betteridge , P. Boyle (1999) Cancer incidence and mortality after radioiodine treatment for hyperthyroidism: a population based study, Lancet 353, 2111-2115.

S.A. Fry (1998) Studies of US radium dial workers: An epidemiological classic, Radiat. Res. 150, S21-S29.

K. Hahn , P. Schnell-Inderst , B. Grosche , L.E. Holm (2001) Thyroid cancer after diagnostic administration of iodine-131 in childhood, Radiat. Res. 156, 61-70.

E.B. Harvey , J.D. Boice , M. Honeyman , J.T. Flannery (1985) Prenatal X-ray exposure and childhood cancer in twins, N. Engl. J. Med. 312, 541-545.

D.A. Hoffman , J.E. Bronstein , M.M. Morin (1989) Breast cancer in women with scoliosis exposed to multiple diagnosis X-rays, J. Natl. Cancer Inst. 81, 1307-1312.

L.E. Holm , P. Hall , K. Wiklund et al. (1991) Cancer risk after iodine-131 therapy for hyperthyroidism, J. Natl. Cancer Inst. 83, 1072-1077.

P.D. Inskip , A. Ekbom , M.R. Galanti , L. Grimelius , J.D.J. Boice (1995) Medical diagnostic X rays and thyroid cancer, J. Natl. Cancer Inst. 87, 1613-1621.

V. Ivanov , L. Ilyin , A. Gorski , A. Tukov , R. Naumenko (2004) Radiation and epidemiological analysis for solid cancer incidence among nuclear workers who participated in recovery operations following the accident at the Chernobyl, J. Radiat. Res. (Tokyo) 45, 41-44.

K. Kamiya , J. Yasukawa-Barnes , J. Mitchen , M. Gould , K. Clifton (1995) Evidence that carcinogenesis involves an imbalance between epigenetic high frequency initiation and suppression of promotion, PNAS 92, 1332-1336.

H. Katayama , M. Matsuura , S. Endo , M. Hoshi , M. Ohtaki , N. Hayakawa (2002) Reassessment of the cancer mortality risk among Hiroshima atomic-bomb survivors using a new dosimetry system, ABS2000D, compared with ABS93D, J. Radiat. Res. (Tokyo) 43, 53-64.

M. Ko , X.Y. Lao , R. Kapadia , E. Elmore , J.L. Redpath (2006) Neoplastic transformation in vitro by low doses of ionizing radiation: role of adaptive response and bystander effects, Mutat. Res. 597, 11-17.

D. Krewski , J.H. Lubin , J.M. Zielinski , M. Alavanja , V.S. Catalan , R.W. Field , J.B. Klotz , E.G Letourneau , C.F. Lynch , J.I. Lyon , D.P. Sandler , J.B. Schoenberg , D.J. Steck , J.A. Stolwijk , C. Weinberg , H.B. Wilcox (2005) Residential radon and risk of lung cancer: a combined analysis of 7 North American case-control studies, Epidemiology 16, 137-145.

M.P. Little , C.R. Muirhead (1996) Evidence for curvilinearity in the cancer incidence dose-response in the Japanese atomic bomb survivors, Int. J. Radiat. Biol. 70, 83-94.

M.P. Little , C.R. Muirhead (2000) Derivation of low dose extrapolation factors from analysis of the curvature in the cancer incidence dose response in Japanese atomic bomb survivors, Int. J. Radiat. Biol. 76, 939-953.

Z. Liu , C.E. Mothersill , F.E. McNeill , F.M. Lyng , S.H. Byun , C.B. Seymour , W.V. Prestwich (2006) A dose threshold for a medium transfer bystander effect for a human skin cell line, Radiat. Res. 166, 19-23.

M. Löbrich , N. Rief , M. Kuhne , J. Fleckenstein , C. Rube , M. Uder (2005) In vivo formation and repair of DNA double-strand breaks after computed tomography examinations, Proc. Natl. Acad. Sci. USA 102, 8984-8989.

B.D. Loucas , R. Eberle , S.M. Bailey M.N. Cornforth (2004) Influence of dose rate on the induction of simple and complex chromosome exchanges by gamma rays, Radiat. Res. 162, 339-349.

F.M. Lyng , P. Maguire , B. McClean , C. Seymour , C. Mothersill (2006a) The involvement of calcium and MAP kinase signaling pathways in the production of radiation-induced bystander effects, Radiat. Res. 165, 400-409.

F.M. Lyng , P. Maguire , N. Kilmurray , C. Mothersill , C. Shao , M. Folkard , K.M. Prise (2006b) Apoptosis is initiated in human keratinocytes exposed to signalling factors from microbeam irradiated cells, Int. J. Radiat. Biol. 82, 393-399.

B. Marples , B.G. Wouters , S.J. Collis , A.J. Chalmers , M.C. Joiner (2004) Low-dose hyper-radiosensitivity: a consequence of ineffective cell cycle arrest of radiation-damaged G2-phase cells, Radiat. Res. 161, 247-255.

C. Menard , D. Johann , M. Lowenthal et al. (2006) Discovering clinical biomarkers of ionizing radiation exposure with serum proteomic analysis, Cancer Res. 66, 1844-1850.

G. Mezei , M.J. Borugian , J.J. Spinelli , R. Wilkins , Z. Abanto , M.L. McBride (2006) Socioeconomic status and childhood solid tumor and lymphoma incidence in Canada, Am. J. Epidemiol. 164, 170-175.

M. Mifune , T. Sobue , H. Arimoto , Y. Komoto , S. Kondo , H. Tanooka (1992) Cancer mortality survey in a spa area (Misasa, Japan) with a high radon background, Jpn J. Cancer Res. 83, 1-5.

A.B. Miller , G.R. Howe , G.J. Sherman et al. (1989) Mortality from breast cancer after irradiation during fluoroscopic examinations in patients being treated for tuberculosis, N. Engl. J. Med. 321, 1285-1289.

R.C. Miller , G. Randers-Pehrson , C.R. Geand , E. Hall , D.J. Brenner (1999) The oncogenic transforming potentiel of the passage of single alpha particles through mammalian cell nuclei, Proc. Natl. Acad. Sci. USA 96, 19-22.

A.K. Mohan , M. Hauptmann , M.S. Linet et al. (2002) Breast cancer mortality among female radiologic technologists in the United States, J. Natl. Cancer Inst. 94, 943-948.

A.K. Mohan , M. Hauptmann , D.M. Freedman et al. (2003) Cancer and other causes of mortality among radiologic technologists in the United States, Int. J. Cancer 103, 259-67.

R.H. Mole (1974) Antenatal irradiation and childhood cancer: causation or coincidence, Br. J. Cancer 30, 199-208.

G. Monchaux , J.P. Morlier , S Altmeyer , M. Debroche , M. Morin (1999) Influences of exposure rate on lung cancer induction in rats exposed to radon progeny, Radiat. Res. 152, S137-S140.

C. Mothersill , C. Seymour (2001) Radiation-induced bystander effects: past history and future directions, Radiat. Res. 155, 759-67.

C. Mothersill , C. Seymour (2006a) Radiation-induced bystander and other non-targeted effects: novel intervention points in cancer therapy? Curr. Cancer. Drug. Targets 6, 447-454.

M.K. Nair , K.S. Nambi , N.S. Amma et al. (1999) Population study in the high natural background radiation area in Kerala, Ind. Radiat. Res. 152, S145-S148.

E. Naumburg , R. Belloco , S. Cnattingius et al. (2002) Intrauterine exposure to diagnostic of X rays and risk of childhood leukemia subtypes, Radiat. Res. 156, 718-723.

K. Noguchi , M. Shimizu , Z. Anzai (1986) Correlation between natural radiation exposure and cancer mortality in Japan (I), J. Radiat. Res. 27, 191-212.

U. Nyberg , B. Nilsson , L.B. Travis , L.E. Holm , P. Hall (2002) Cancer incidence among Swedish patients exposed to radioactive thorotrast: a forty-year follow-up survey, Radiat. Res. 157, 419-425.

B.E. Oppenheim , M.L. Griem , P. Meier (1975) The effects of diagnostic X-ray exposure on the human fetus: an examination of the evidence, Radiology 114, 529-534.

D.I. Portess , G. Bauer , M.A. Hill , O’Neill P. (2007) Low-dose irradiation of nontransformed cells stimulates the selective removal of precancerous cells via intercellular induction of apoptosis, Cancer Res. 67, 1246-1253.

D.L. Preston , A. Mattsson , E. Holmberg , R. Shore , N.G. Hildreth , J.D. Boice (2002) Radiation effects on breast cancer risk: a pooled analysis of eight cohorts, Radiat. Res. 158, 220-235.

D.L. Preston , D.A. Pierce , Y. Shimizu et al. (2004) Effect of recent changes in atomic bomb survivor dosimetry on cancer mortality risk estimates, Radiat. Res. 162, 377-389.

O.G. Raabe , S.A. Book (1981) Dose-response relationship for bone tumors in beagle exposed to 226Ra and 90Sr, Health Phys. 40, 863-880.

D.C. Radisky , M.J. Bissell (2004) Cancer. Respect thy neighbor! Science 303, 774-775.

J.L. Redpath (2004) Radiation induced neoplastic transformation in vitro: evident for a protective effect at low doses of low LET, Rad. Cancer Metast. Rev. 23, 333-339.

O. Rigaud , E. Moustacchi (1996) Radioadaptation for gene mutation and the possible molecular mechanisms of the adaptive response, Mutat. Res. 358, 127-134.

Y. Rodvall , G. Pershagen , Z. Hrubec , A. Ahlbom , N.L. Pedersen , J.D. Boice (1990) Prenatal X-ray exposure and childhood cancer in Swedish twins, Int. J. Cancer 46, 362-365.

Y. Rodvall , Z. Hrubec , G. Pershagen et al. (1992) Childhood cancer among Swedish twins, Cancer Causes Control 3, 527-532.

K. Rothkamm , M. Löbrich (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-ray doses, Proc. Natl. Acad. Sci. USA 100, 5057-5062.

C. Rubino , F. de Vathaire , A. Shamsaldin , M. Labbe , M.G. Le (2003) Radiation dose, chemotherapy, hormonal treatment and risk of second cancer after breast cancer treatment, Br. J. Cancer 89, 840-846.

C.L. Sanders , K.E. Lauhala , K.E. McDonald (1993) Lifespan studies in rats exposed to 239PuO2. III. Survival and lung tumors, Int. J. Radiat. Biol. 64, 417430.

B. Scott (2006) Risk of thyroid cancer after exposure to (131)I in childhood, Response Cardis E., Kesminienne A., J. Nat. Cancer Inst. 98, 561.

N.S. Shilnikova , D.L. Preston , E. Ron et al. (2003) Cancer mortality risk among workers at the Mayak nuclear complex, Radiat. Res. 159, 787-798.

A.J. Sigurdson , M.M. Doody , R.S. Rao et al. (2003) Cancer incidence in the US radiologic technologists health study, 1983-1998, Cancer 97, 3080-3089.

T. Sobue , V.S. Lee , W. Ye , H. Tanooka , M. Mifune , A. Suyama , T. Koga , H. Morishima , S. Kondo (2000) Residential radon exposure and lung cancer risk in Misasa, Japan: a case-control study, J. Radiat. Res. (Tokyo) 41, 81-92.

J.H. Stebbings , H.F. Lucas , A.F. Stehney (1984) Mortality from cancers of major sites in female radium dial workers, Am. J. Ind. Med. 5, 435-459.

H. Tanooka (2001) Threshold dose-response in radiation carcinogenesis: an approach from chronic beta-irradiation experiments and a review of non tumour doses, Int. J. Radiat. Biol. 77, 541-551.

Z. Tao , Y. Zha , S. Akiba , Q. Sun et al. (2000) Cancer mortality in the high background radiation areas of Yangjiang, China during the period between 1979 and 1995, J. Radiat. Res. (Tokyo) 41, 31-41.

L.B. Travis , C.E. Land , M. Andersson , U. Nyberg (2001) Mortality after cerebral angiography with or without radioactive Thorotrast: an international cohort of 3, 143 two-year survivors, Radiat. Res. 156, 136-150.

L.B. Travis , M. Hauptmann , L.K. Gaul et al. (2003) Site-specific cancer incidence and mortality after cerebral angiography with radioactive thorotrast, Radiat. Res. 160, 691-706.

M Tubiana (2003) The carcinogenic effect of low doses: the validity of the linear nothreshold relationship, Int. J. Low Rad. 1, 1-31.

M. Tubiana , A. Aurengo , D. Averbeck , R. Masse (2006a) Recent reports on the effect of low doses of ionizing radiation and its dose-effect relationship, Radiat. Environ. Biophys. 44, 245-251.

M. Tubiana , A. Aurengo , D. Averbeck , R. Masse (2006b) The debate on the use of LNT for assessing the effects of low doses, J. Radiol. Prot. 26, 317-324.

M.M. Vilenchik , A.G. Knudson (2000) Inverse radiation dose-rate effects on somatic and germ-line mutations and DNA damage rates, Proc. Natl. Acad. Sci. USA 97, 5381-5386.

M.M. Vilenchik , A.G. Knudson (2003) Endogenous DNA double strand breaks: Productio, fidelity of repair, and induction of cancer, Proc. Natl. Acad. Sci. USA 100, 12871-12876.

M.M. Vilenchik , A.G. Knudson (2006) Radiation dose-rate effects, endogenous DNA damage, and signaling resonance, Proc. Natl. Acad. Sci. USA 103, 17874-17879.

R. Wakeford , M.P. Little (2003) Risk coefficients for childhood cancer after intrauterine irradiation: a review, Int. J. Radiat. Biol. 79, 293-309.

J.X. Wang , L.A. Zhang , B.X. Li et al. (2002) Cancer incidence and risk estimation among medical X-ray workers in China 1950-1995, Health Phys. 82, 455-466.

L. Wei , T. Sugahara (2000) An introductory overview of the epidemiological study on the population at the high background radiation areas in Yangjiang, China, J. Radiat. Res. (Tokyo) 41, 1-7.

F. Yang , D.M. Stenoien , E.F. Strittmatter et al. (2006) Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose irradiation, J. Proteome Res. 5, 1252-1260.

H. Zeeb , M. Blettner , I. Langner et al. (2003) Mortality from cancer and other causes among airline cabin attentants in Europe: a collaborative study in eight countries, Am. J. Epidemiol. 158, 35-46.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Radioprotection
  • ISSN: 0033-8451
  • EISSN: 1769-700X
  • URL: /core/journals/radioprotection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 10 *
Loading metrics...

Abstract views

Total abstract views: 15 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th June 2017. This data will be updated every 24 hours.