Hostname: page-component-59f8fd8595-tmn4r Total loading time: 0 Render date: 2023-03-21T18:07:00.691Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true


Published online by Cambridge University Press:  25 August 2020



Is a logicist bound to the claim that as a matter of analytic truth there is an actual infinity of objects? If Hume’s Principle is analytic then in the standard setting the answer appears to be yes. Hodes’s work pointed to a way out by offering a modal picture in which only a potential infinity was posited. However, this project was abandoned due to apparent failures of cross-world predication. We re-explore this idea and discover that in the setting of the potential infinite one can interpret first-order Peano arithmetic, but not second-order Peano arithmetic. We conclude that in order for the logicist to weaken the metaphysically loaded claim of necessary actual infinities, they must also weaken the mathematics they recover.

Research Article
© Association for Symbolic Logic 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Bell, J. L. (1999). Frege’s theorem in a constructive setting. Journal of Symbolic Logic, 64(2), 486488.CrossRefGoogle Scholar
Benacerraf, P. (1965). What numbers could not be. Philosophical Review, 74(1), 4773.CrossRefGoogle Scholar
Boolos, G. (1998). Logic, Logic, and Logic. Cambridge, MA: Harvard University Press.Google Scholar
Burgess, J. P. (2005). Fixing Frege. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Button, T., & Walsh, S. (2018). Philosophy and Model Theory. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Cook, R. T. (2007). Introduction. In Cook, R. T., editor. The Arché Papers on the Mathematics of Abstraction. The Western Ontario Series in Philosophy of Science, Vol. 71. Berlin, Germany: Springer, pp. xvxxxvii.CrossRefGoogle Scholar
Demopoulos, W. (1994). Frege and the rigorization of analysis. Journal of Philosophical Logic, 23(3), 225245.CrossRefGoogle Scholar
Feferman, S. (2005). Predicativity. In Shapiro, S., editor. The Oxford Handbook of Philosophy of Mathematics and Logic. Oxford, UK: Oxford University Press, pp. 590624.CrossRefGoogle Scholar
Fitting, M., & Mendelsohn, R. L. (1998). First-Order Modal Logic. Dordrecht, Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Frege, G. (1884). Die Grundlagen der Arithmetik: eine logisch mathematische Untersuchung über den Begriff der Zahl (translated as The Foundations of Arithmetic: A logico-mathematical enquiry into the concept of number, by Austin, J.L., Oxford: Blackwell, second revised edition, 1974). Breslau: W. Koebner.Google Scholar
Frege, G. (1893). Grundgesetze der Arithmetik, begriffsschriftlich abgeleitet (translated as Basic Laws of Arithmetic: Derived using concept-script by Ebert, P. and Rossberg, M. (with Wright, C.), Oxford, UK: Oxford University Press, 2013). Jena: Verlag Hermann Pohle.Google Scholar
Hájek, P., & Pudlák, P. (1998). Metamathematics of First-Order Arithmetic. Perspectives in Mathematical Logic. Berlin, Germany: Springer.Google Scholar
Hale, B, & Wright, C. (2001). The Reason’s Proper Study. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Heck, R. K. (1993). The development of arithmetic in Frege’s Grundgesetze der Arithmetik. Journal of Symbolic Logic, 58(2), 579601 (originally published under the name “Richard G. Heck, Jr”).CrossRefGoogle Scholar
Hodes, H. (1984). Logicism and the ontological commitments of arithmetic. The Journal of Philosophy, 81(3), 123149.CrossRefGoogle Scholar
Hodes, H. (1990). Where do the natural numbers come from? Synthese, 84(3), 347407.CrossRefGoogle Scholar
Hodges, W. (1993). Model Theory. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
Kim, J. (2015). A logical foundation of arithmetic. Studia Logica, 103(1), 113144.CrossRefGoogle Scholar
Kocurek, A. W. (2016). The problem of cross-world predication. Journal of Philosophical Logic, 45(6), 697742.CrossRefGoogle Scholar
Linnebo, Ø (2013). The potential hierarchy of sets. The Review of Symbolic Logic, 6(2), 205228.CrossRefGoogle Scholar
Linnebo, Ø. (2018). Thin Objects: An Abstractionist Account. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Linnebo, Ø., & Shapiro, S. (2019). Actual and potential infinity. Noûs, 53(1), 160191.CrossRefGoogle Scholar
van Heijenoort, J. (1967). From Frege to Gödel : A Source Book in Mathematical Logic, 1879–1931. Cambridge, MA: Harvard University Press.Google Scholar
Linnebo, Ø., & Shapiro, S. (2019). Actual and potential infinity. Noûs, 53(1), 160191.CrossRefGoogle Scholar
Mostowski, M. (2001). On representing concepts in finite models. Mathematical Logic Quarterly, 47(4), 513523.3.0.CO;2-J>CrossRefGoogle Scholar
Parsons, C. (1983). Sets and modality. Mathematics in Philosophy: Selected Essays. Ithaca, NY: Cornell University Press, pp. 298341.Google Scholar
Putnam, H. (1967). Mathematics without foundations. Journal of Philosophy, 64(1), 522. reprinted in Putnam 1979.CrossRefGoogle Scholar
Shapiro, S., & Linnebo, Ø. (2015). Frege meets Brouwer. Review of Symbolic Logic, 8(3), 540552.CrossRefGoogle Scholar
Simpson, S. (2009). Subsystems of Second Order Arithmetic. Perspectives in Logic. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
Stanley, J. (1997). Names and rigid designation. In Hale, B, and Wright, C., editors. A Companion to the Philosophy of Language. Malden: Blackwell, pp. 555585.Google Scholar
Studd, J. P. (2016). Abstraction reconceived. The British Journal for the Philosophy of Science, 67(2), 579615.CrossRefGoogle Scholar
Urbaniak, R. (2016). Potential infinity, abstraction principles and arithmetic (leniewski style). AXIOMS, 5(2), 20.CrossRefGoogle Scholar
Walsh, S. (2016). The strength of abstraction with predicative comprehension. The Bulletin of Symbolic Logic, 22(1), 105120.CrossRefGoogle Scholar
Whitehead, A., & Russell, B. (1910). Principia Mathematica, Vol. 1. Cambridge, MA: Cambridge University Press.Google Scholar
Williamson, T. (2013). Modal Logic as Metaphysics. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar