Skip to main content
×
Home

POINT-FREE GEOMETRY, OVALS, AND HALF-PLANES

  • GIANGIACOMO GERLA (a1) and RAFAŁ GRUSZCZYŃSKI (a2)
Abstract
Abstract

In this paper we develop a point-free system of geometry based on the notions of region, parthood, and ovality, the last one being a region-based counterpart of the notion of convex set. In order to show that the system we propose is sufficient to reconstruct an affine geometry we make use of a theory of a Polish mathematician Aleksander Śniatycki from [15], in which the concept of half-plane is assumed as basic.

Copyright
Corresponding author
*THE INTERNATIONAL INSTITUTE FOR ADVANCED SCIENTIFIC STUDIES (IIASS) SALERNO, ITALY E-mail: ggerla104@gmail.com URL: www.ggerla.it
DEPARTMENT OF LOGIC NICOLAUS COPERNICUS UNIVERSITY IN TORUŃ POLAND E-mail: gruszka@umk.pl URL: www.umk.pl/∼gruszka
References
Hide All
[1] Borgo S., Guarino N., & Masolo C. (1996). A pointless theory of space based on strong connection and congruence. In Aiello L.C., Doyle J. and Shapiro S.C., editors, Proceedings of Principles of Knowledge Representation and Reasoning (kr96). Boston, MA: Morgan Kaufmann, pp. 220229.
[2] de Laguna T. (1922). Point, line, and surface, as sets of solids. Journal of Philosophy, 19(17), 449461.
[3] Gerla G. (1990). Pointless metric spaces. The Journal of Symbolic Logic, 55(1), 207219.
[4] Gerla G. (1995). Pointless geometries. In Buekenhout F., editor. Handbook of Incidence Geometry. Amsterdam: Elsevier Science B.V., pp. 10151331.
[5] Gruszczyński R. & Pietruszczak A. (2008). Full development of Tarski’s geometry of solids. The Bulletin of Symbolic Logic, 14(4), 481540.
[6] Haemerli M. & Varzi A. (2014). Adding convexity to mereotopology. In Garbacz P. and Kutz O., editors, Formal Ontology in Information Systems. Proceedings of the Eighth International Conference. Amsterdam: IOS Press, pp. 6578.
[7] Hellman G. & Shapiro S. (2015). Regions-based two dimensional continua: The Euclidean case. Logic and Logical Philosophy, 24(3), 499534.
[8] Huntington E. V. (1913). A set of postulates for abstract geometry, expressed in terms of the simple relation of inclusion. Mathematische Annalen, 73, 522559.
[9] Jaśkowski S. (1948). Une modification des définitions fondamentales de la géométrie de corps de M.A. Tarski. Annales de la Société Polonaise de Mathématique, XXI, 298–301.
[10] Maruyama Y. (2010). Fundamental results for pointfree convex geometry. Annals of Pure and Applied Logic, 161(12), 14861501.
[11] Nenov Y. & Pratt-Hartmann I. (2010). On the computability of region-based Euclidean logics. In Dawar A. and Veith H., editors. Computer Science Logic. Lecture Notes in Computer Science, Vol. 6247. Berlin, Heidelberg: Springer, pp. 439453.
[12] Pratt I. (1999). First-order qualitative spatial representation languages with convexity. Spatial Cognition and Computation, 1(2), 181204.
[13] Pratt I. & Schoop D. (1998). A complete axiom system for polygonal mereotopology of the real plane. Journal of Philosophical Logic, 27(6), 621658.
[14] Pratt I. & Schoop D. (2000). Expressivity in polygonal, plane mereotopology. The Journal of Symbolic Logic, 65(2), 822838.
[15] Śniatycki A. (1968). An Axiomatics of Non-Desarguean Geometry Based on the Half-Plane as the Primitive Notion. Dissertationes Mathematicae, no. LIX. Warszawa: PWN.
[16] Tarski A. (1929). Les fondements de la géometrié de corps. Księga Pamiątkowa Pierwszego Polskiego Zjazdu Matematycznego, supplement to Annales de la Societé Polonaise de Mathématique. Kraków, pp. 2933.
[17] Trybus A. (2010). An axiom system for a spatial logic with convexity. Proceedings of the 2010 Conference on ECAI 2010: 19th European Conference on Artificial Intelligence. Amsterdam, The Netherlands: IOS Press, pp. 701706.
[18] van de Vel M. L. J. (1993). Theory of Convex Structures. Amsterdam: North-Holland.
[19] Varzi A. (1994). On the boundary between mereology and topology. In Casati R., Smith B., and White G., editors. Philosophy and the Cognitive Science. Proceedings of the 16th International Wittgenstein Symposium. Vienna: Hölder-Pichler-Tempsky, pp. 423442.
[20] Whitehead A. N. (1919). An Inquiry Concerning the Principles of Natural Knowledge. Cambridge: Cambridge University Press.
[21] Whitehead A. N. (1920). The Concept of Nature. Cambridge: Cambridge University Press.
[22] Whitehead A. N. (1929). Process and Reality. New York: Macmillan.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Review of Symbolic Logic
  • ISSN: 1755-0203
  • EISSN: 1755-0211
  • URL: /core/journals/review-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 24 *
Loading metrics...

Abstract views

Total abstract views: 192 *
Loading metrics...

* Views captured on Cambridge Core between 23rd January 2017 - 18th November 2017. This data will be updated every 24 hours.