Skip to main content
×
×
Home

Integral backstepping control for trajectory and yaw motion tracking of quadrotors

  • Alexander Poultney (a1), Peiyan Gong (a1) and Hashem Ashrafiuon (a1)
Summary

This work presents a novel trajectory tracking, hovering, and yaw motion control for quadrotors subject to unknown modeling uncertainties and disturbances. Nonlinear equations of motion are used to model the quadrotor's motion without any simplifying assumptions. An integral backstepping control is developed by defining the tracking errors, their integral, and their first through third time derivatives as the system states. The resulting surge force and roll and pitch moments are shown to asymptotically stabilize the error states subject to bounded disturbances and modeling uncertainties. Similarly, a yaw moment is derived through integral backstepping that simultaneously stabilizes yaw motion errors. The controller performance in simultaneous trajectory and yaw motion tracking is verified through both simulations and experiments.

Copyright
Corresponding author
*Corresponding author. E-mail: hashem.ashrafiuon@villanova.edu.
References
Hide All
1. Mahony, R., Kumar, V. and Corke, P., “Multirotor aerial vehicles: Modeling, estimation and control of quadrotor,” IEEE Robot. Autom. Mag. 19 (3), 2032 (2012).
2. Hua, M.-D., Hamel, T., Morin, P. and Samson, C., “Introduction to feedback control of underactuated VTOL vehicles,” IEEE Control Syst. Mag. 33 (1), 6175 (2013).
3. Sanchez-Orta, A., Perra-Vega, V., Espinosa, C. zaguirre and Garci, O., “Positionyaw tracking of quadrotors,” J. Dyn. Syst. Meas. Control 137 (6), 061011 (2015).
4. Nieuwstadt, M. V. and Murray, R., “Real-time trajectory generation for differentially flat systems,” Int. J. Robust Nonlinear Control 8 (11), 9951020 (1998).
5. Mellinger, D. and Kumar, V., “Minimum Snap Trajectory Generation and Control for Quadrotors,” Proceedings of the IEEE Conference on Decision and Control (2011) pp. 2520–2525.
6. Thomas, J., Loianno, G., Sreenath, K. and Kumar, V., “Toward Image Based Visual Servoing for Aerial Grasping and Perching,” Proceedings of the IEEE International Conference on Robotics and Automation (2014) pp. 2113–2118.
7. Zhou, D. and Schwager, M., “Vector Field Following for Quadrotors Using Differential Flatness,” Proceedings of the IEEE International Conference on Robotics and Automation (2014) pp. 6567–6572.
8. Bouabdallah, S. and Siegwart, R., “Full Control of a Quadrotor,” IEEE/RS Int. Conference on Intelligent Robots and Systems (2007) pp. 153–158.
9. Adigbeli, P., “Nonlinear Attitude and Position Control of A Micro Quadrotor Using Sliding Mode and Backstepping Techniques,” Proceedings of the 3rd US-European Competition and Workshop on Micro Air Vehicle Systems (2007) pp. 1–9.
10. Xu, R. and Özgüne, U., “Sliding mode control of a class of underactuated systems,” Automatica 44 (1), 233241 (2008).
11. Runcharoon, K. and Srichatrapimuk, V., “Sliding Mode Control of Quadrotor,” Proceedings of the International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (2013) pp. 552–557.
12. Dydek, Z., Annaswamy, A. and Lavretsky, E., “Adaptive control of quadrotor UAVs: A design trade study with flight evaluations,” IEEE Transactions on Control Systems Technology 21 (4), 14001406 (2013).
13. Yesildirek, A. and Imran, B., “Nonlinear Control of Quadrotor Using Multi Lyapunov Functions,” Proceedings of the American Control Conference (2014) pp. 3844–3849.
14. Zheng, E.-H., Xiong, J.-J. and Luo, J.-L., “Second order sliding mode control for a quadrotor UAV,” ISA Trans. 53, 13501356 (2014).
15. Choi, Y.-C. and Ahn, H.-S., “Nonlinear control of quadrotor for point tracking: Actual implementation and experimental tests,” IEEE/ASME Trans. Mechatronics 20 (3), 11791192 (2015).
16. Zhao, B., Zhang, B. X. Y. and Zhang, X., “Nonlinear robust adaptive tracking control of a quadrotor uav via immersion and invariance methodology,” IEEE Trans. Ind. Electron. 62 (5), 28912902 (2015).
17. Yu, Y., Guo, Y., Pan, X. and Sun, C., “Robust Backstepping Tracking Control of Uncertain MIMO Nonlinear Systems with Application to Quadrotor UAVs,” Proceeding of the IEEE International Conference on Information and Automation (2015) pp. 2868–2873.
18. Tayebi, A. and McGilvray, S., “Attitude stabilization of a VTOL quadrotor aircraft,” IEEE Trans. Control Syst. Technol. 14 (3), 562571 (2006).
19. Yeh, F.-K., “Sliding-mode controller design for a mini-UAV with propellers,” Trans. Japan Soc. Aeronaut. Space Sci. 55 (1), 3036 (2012).
20. Lee, T., “Robust adaptive attitude tracking on SO(3) with an application to a quadrotor UAV,” IEEE Trans. Control Syst. Technol. 21 (5), 19241930 (2013).
21. Xian, B., Zhao, B., Zhang, Y. and Zhang, X., “Nonlinear control of a quadrotor with deviated center of gravity,” J. Dyn. Syst. Meas. Control 139 (1), 011003 (2017).
22. Liu, H., Li, D., Yu, Y. and Zhong, Y., “Robust trajectory tracking control of uncertain quadrotors without linear velocity measurements,” IET Control Theory Appl. 9 (11), 17461755 (2015).
23. Sanz, R., Garcia, P., Zhong, Q.-C. and Albertos, P., “Robust control of quadrotors based on an uncertainty and disturbance estimator,” J. Dyn. Syst. Meas. Control 138 (7), 071006 (2016).
24. Hua, M.-D., Hamel, T., Morin, P. and Samson, C., “A control approach for thrust-propelled underactuated vehicles and its application to VTOL drones,” IEEE Trans. Autom. Control 54 (8), 18371853 (2009).
25. Madani, T. and Benallegue, A., “Backstepping Control for a Quadrotor Helicopter,” Proceedings of the IEEE/RSJ Int. Conference on Intelligent Robots and Systems (2006) pp. 3255–3260.
26. Mian, A. and Wang, D., “Nonlinear Flight Control Strategy for an Underactuated Quadrotor Aerial Robot,” Proceedings of the IEEE International Conference on Networking, Sensing and Control (2008) pp. 938–942.
27. Das, A., Lewis, F. and Subbarao, K., “Backstepping approach for controlling a quadrotor using lagrange form dynamics,” J. Intell. Robot. Syst. 56 (1), 127151 (2009).
28. Fang, Z. and Gao, W., “Adaptive Integral Backstepping Control of a Micro-Quadrotor,” Proceedings of the International Conference on Intelligent Control and Information Processing (2011) pp. 910–915.
29. Raffo, G., Ortega, M. and Rubio, F., “An integral predictive/nonlinear h control structure for a quadrotor helicopter,” Automatica 46, 2939 (2010).
30. Lee, T., Leoky, M. and McClamroch, N., “Geometric Tracking Control of a Quadrotor UAV on SE(3),” Proceedings of the IEEE Conference on Decision and Control (2010) pp. 5420–5425.
31. Mellinger, D., Michael, N. and Kumar, V., “Trajectory generation and control for precise aggressive maneuvers with quadrotors,” Int. J. Robot. Res. 31 (5), 664674 (2012).
32. Lee, T., Leoky, M. and McClamroch, N., “Nonlinear robuts tracking control of a quadrotor UAV on SE(3),” Asian J. Control 15 (2), 391408 (2013).
33. Goodarzi, F., Lee, D. and Lee, T., “Geometric adaptive tracking control of a quadrotor unmanned aerial vehicle on se(3) for agile maneuvers,” J. Dyn. Syst. Meas. Control 137 (9), 091007 (2015).
34. Rosales, C., Gandolfo, D., Scaglia, G., Jordan, M. and Carelli, R., “Trajectory tracking of a mini four-rotor helicopter in dynamic environments - a linear algebra approach,” Robotica 33 (8), 1682–1652 (2015).
35. Zuo, Z., “Trajectory trajectory tracking control design with command filtered compensation for a quadrotor,” IET Control Theory Appl. 4 (11), 23432355 (2010).
36. Abdessameuda, A. and Tayebi, A., “Global trajectory tracking control of vtol-uavs without linear velocity measurements,” Automatica 46 (6), 10531059 (2010).
37. Ding, X., Wang, X., Yu, Y. and Zha, C., “Dynamics modeling and trajectory tracking control of a quadrotor unmanned aerial vehicle,” J. Dyn. Syst. Meas. Control 139 (2), 021004.
38. Cabecinhas, D., Cunha, R. and Silvestre, C., “A nonlinear quadrotor trajectory tracking controller with disturbance rejection,” Control Eng. Pract. 26, 110 (2014).
39. Kobilarov, M., “Trajectory Tracking of A Class of Underactuated Systems with External Disturbances,” Proceedings of the American Control Conference (2013) pp. 1044–1049.
40. Ramirez-Rodriguez, H., Parra-Vega, V. and Garcia-Salazar, O., “Robust backstepping control based on integral sliding modes for tracking of quadrotors,” J. Intell. Robot. Syst. 73, 5166 (2014).
41. Poultney, A., Gong, P. and Ashrafiuon, H., “Robust Integral Backstepping Control of Quadrotors,” Proceedings of the ASME Dynamic Systems and Control Conference, vol. 2 (2017) p. V002T12A001.
42. Jazar, R., Advanced Dynamics: Rigid Body, Multibody, snf Aerospace Applications (John Wiley & Sons, Inc., Hoboken, NJ, 2011).
43. Khalil, H., Nonlinear Systems (Prentice-Hall, Upper Saddle River, NJ 2002).
44. Einicke, G. and White, L., “Robust extended kalman filtering,” IEEE Trans. Signal Process. 47 (9), 25962599 (1999).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Robotica
  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed