Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 14
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Huo, Heqiang Wei, Shouhui and Bradford, Kent J. 2016. DELAY OF GERMINATION1(DOG1) regulates both seed dormancy and flowering time through microRNA pathways. Proceedings of the National Academy of Sciences, Vol. 113, Issue. 15, p. E2199.

    Aung, Banyar Gruber, Margaret Y. and Hannoufa, Abdelali 2015. The MicroRNA156 system: A tool in plant biotechnology. Biocatalysis and Agricultural Biotechnology, Vol. 4, Issue. 4, p. 432.

    Aung, Banyar Gruber, Margaret Y. Amyot, Lisa Omari, Khaled Bertrand, Annick and Hannoufa, Abdelali 2015. Ectopic expression of LjmiR156 delays flowering, enhances shoot branching, and improves forage quality in alfalfa. Plant Biotechnology Reports, Vol. 9, Issue. 6, p. 379.

    Aung, Banyar Gruber, Margaret Y. Amyot, Lisa Omari, Khaled Bertrand, Annick and Hannoufa, Abdelali 2015. MicroRNA156 as a promising tool for alfalfa improvement. Plant Biotechnology Journal, Vol. 13, Issue. 6, p. 779.

    Du, Zhen Jia, Xiao Lin Wang, Yi Wu, Ting Han, Zhen Hai and Zhang, Xin Zhong 2015. Redox homeostasis and reactive oxygen species scavengers shift during ontogenetic phase changes in apple. Plant Science, Vol. 236, p. 283.

    Fang, Yan-Ni Qiu, Wen-Ming Wang, Yao Wu, Xiao-Meng Xu, Qiang and Guo, Wen-Wu 2014. Identification of differentially expressed microRNAs from a male sterile Ponkan mandarin (Citrus reticulata Blanco) and its fertile wild type by small RNA and degradome sequencing. Tree Genetics & Genomes, Vol. 10, Issue. 6, p. 1567.

    Jorgensen, Stacy A. and Preston, Jill C. 2014. Differential SPL gene expression patterns reveal candidate genes underlying flowering time and architectural differences in Mimulus and Arabidopsis. Molecular Phylogenetics and Evolution, Vol. 73, p. 129.

    Lu, Yi-Bin Yang, Lin-Tong Qi, Yi-Ping Li, Yan Li, Zhong Chen, Yan-Bin Huang, Zeng-Rong and Chen, Li-Song 2014. Identification of boron-deficiency-responsive microRNAs in Citrus sinensis roots by Illumina sequencing. BMC Plant Biology, Vol. 14, Issue. 1, p. 123.

    Duarte, G. T. Matiolli, C. C. Pant, B. D. Schlereth, A. Scheible, W.-R. Stitt, M. Vicentini, R. and Vincentz, M. 2013. Involvement of microRNA-related regulatory pathways in the glucose-mediated control of Arabidopsis early seedling development. Journal of Experimental Botany, Vol. 64, Issue. 14, p. 4301.

    Sun, Chao Zhao, Qiang Liu, Dan–Dan You, Chun-Xiang and Hao, Yu-Jin 2013. Ectopic expression of the apple Md-miRNA156h gene regulates flower and fruit development in Arabidopsis. Plant Cell, Tissue and Organ Culture (PCTOC), Vol. 112, Issue. 3, p. 343.

    Xu, L. Wang, Y. Zhai, L. Xu, Y. Wang, L. Zhu, X. Gong, Y. Yu, R. Limera, C. and Liu, L. 2013. Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots. Journal of Experimental Botany, Vol. 64, Issue. 14, p. 4271.

    Hatt, Clemence Mankessi, François Durand, Jean-Baptiste Boudon, Frédéric Montes, Fabienne Lartaud, Marc Verdeil, Jean-Luc and Monteuuis, Olivier 2012. Characteristics of Acacia mangium shoot apical meristems in natural and in vitro conditions in relation to heteroblasty. Trees, Vol. 26, Issue. 3, p. 1031.

    Shamimuzzaman, Md and Vodkin, Lila 2012. Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing. BMC Genomics, Vol. 13, Issue. 1, p. 310.

    Nonogaki, H. 2010. MicroRNA Gene Regulation Cascades During Early Stages of Plant Development. Plant and Cell Physiology, Vol. 51, Issue. 11, p. 1840.


The microRNA156 and microRNA172 gene regulation cascades at post-germinative stages in Arabidopsis


MicroRNAs (miRNAs) are involved in developmental programmes of plants, including seed germination and post-germination. Here, we provide evidence that two different miRNA pathways, miR156 and miR172, interact during the post-germination stages in Arabidopsis. Mutant seedlings expressing miR156-resistant SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE13 (mSPL13), which has silent mutations in the miR156 complementary sequence, over-accumulated SPL13 mRNA and exhibited a delay in seedling development. Microarray analysis indicated that SCHNARCHZAPFEN (SNZ), an AP2-like gene targeted by miR172, was down-regulated in these mutants. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) and miRNA gel blot analyses showed that the MIR172 genes were up-regulated in mSPL13 mutants. These results suggest that the miRNA regulation cascades (miR156⊣SPL13 → miR172⊣SNZ) play a critical role during the post-germination developmental stages in Arabidopsis.

Corresponding author
*Correspondence Fax: +1 (541) 737-3479 Email:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

T. Arazi , M. Talmor-Neiman , R. Stav , M. Riese , P. Huijser and D.C. Baulcombe (2005) Cloning and characterization of micro-RNAs from moss. The Plant Journal 43, 837848.

M.J. Aukerman and H. Sakai (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. The Plant Cell 15, 27302741.

R.P. Birkenbihl , G. Jach , H. Saedler and P. Huijser (2005) Functional dissection of the plant-specific SBP-domain: Overlap of the DNA-binding and nuclear localization domains. Journal of Molecular Biology 352, 585596.

P. Brodersen , L. Sakvarelidze-Achard , M. Bruun-Rasmussen , P. Dunoyer , Y.Y. Yamamoto , L. Sieburth and O. Voinnet (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320, 11851190.

G.H. Cardon , S. Hohmann , K. Nettesheim , H. Saedler and P. Huijser (1997) Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. The Plant Journal 12, 367377.

J. Chen , W.X. Li , D. Xie , J.R. Peng and S.W. Ding (2004) Viral virulence protein suppresses RNA silencing-mediated defense but upregulates the role of microRNA in host gene expression. The Plant Cell 16, 13021313.

X. Chen (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303, 20222025.

G. Chuck , A.M. Cigan , K. Saeteurn and S. Hake (2007) The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nature Genetics 39, 544549.

S.J. Clough and A.F. Bent (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16, 735743.

M. Gandikota , R.P. Birkenbihl , S. Hohmann , G.H. Cardon , H. Saedler and P. Huijser (2007) The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. The Plant Journal 49, 683693.

S.N. Ho , H.D. Hunt , R.M. Horton , J.K. Pullen and L.R. Pease (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 5159.

P.M. Holland , R.D. Abramson , R. Watson and D.H. Gelfand (1991) Detection of specific polymerase chain reaction product by utilizing the 5′ → 3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proceedings of the National Academy of Sciences, USA, 88, 72767280.

J. Klein , H. Saedler and P. Huijser (1996) A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Molecular and General Genetics 250, 716.

S.P. Moose and P.H. Sisco (1994) Glossy15 controls the epidermal juvenile-to-adult phase transition in maize. The Plant Cell 6, 13431355.

S.P. Moose and P.H. Sisco (1996) Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes & Development 10, 30183027.

A. Motchoulski and E. Liscum (1999) Arabidopsis NPH3: A NPH1 photoreceptor-interacting protein essential for phototropism. Science 286, 961964.

M.W. Rhoades , B.J. Reinhart , L.P. Lim , C.B. Burge , B. Bartel and D.P. Bartel (2002) Prediction of plant microRNA targets. Cell 110, 513520.

M. Riese , S. Hohmann , H. Saedler , T. Munster and P. Huijser (2007) Comparative analysis of the SBP-box gene families in P. patens and seed plants. Gene 401, 2837.

M. Schmid , N.H. Uhlenhaut , F. Godard , M. Demar , R. Bressan , D. Weigel and J.U. Lohmann (2003) Dissection of floral induction pathways using global expression analysis. Development 130, 60016012.

R. Schwab , J.F. Palatnik , M. Riester , C. Schommer , M. Schmid and D. Weigel (2005) Specific effects of microRNAs on the plant transcriptome. Developmental Cell 8, 517527.

U.S. Unte , A.M. Sorensen , P. Pesaresi , M. Gandikota , D. Leister , H. Saedler and P. Huijser (2003) SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis. The Plant Cell 15, 10091019.

H. Wang , T. Nussbaum-Wagler , B. Li , Q. Zhao , Y. Vigouroux , M. Faller , K. Bomblies , L. Lukens and J.F. Doebley (2005) The origin of the naked grains of maize. Nature 436, 714719.

G. Wu and R.S. Poethig (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133, 35393547.

G. Wu , M.Y. Park , S.R. Conway , J.-W. Wang , D. Weigel and R.S. Poethig (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138, 750759.

T. Wurschum , R. Gross-Hardt and T. Laux (2006) APETALA2 regulates the stem cell niche in the Arabidopsis shoot meristem. The Plant Cell 18, 295307.

Z. Xie , E. Allen , N. Fahlgren , A. Calamar , S.A. Givan and J.C. Carrington (2005) Expression of Arabidopsis MIRNA genes. Plant Physiology 138, 21452154.

Y. Yamauchi , M. Ogawa , A. Kuwahara , A. Hanada , Y. Kamiya and S. Yamaguchi (2004) Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. The Plant Cell 16, 367378.

Y. Zhang , S. Schwarz , H. Saedler and P. Huijser (2006) SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis. Plant Molecular Biology 63, 429439.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Seed Science Research
  • ISSN: 0960-2585
  • EISSN: 1475-2735
  • URL: /core/journals/seed-science-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *