Skip to main content

The Effects of Agonists of Ionotropic GABAA and Metabotropic GABAB Receptors on Learning

  • Evgeniya A. Zyablitseva (a1), Nikolay S. Kositsyn (a1) and Galina I. Shul'gina (a1)

The research described here investigates the role played by inhibitory processes in the discriminations made by the nervous system of humans and animals between familiar and unfamiliar and significant and nonsignificant events. This research compared the effects of two inhibitory mediators of gamma-aminobutyric acid (GABA): 1) phenibut, a nonselective agonist of ionotropic GABAA and metabotropic GABAB receptors and 2) gaboxadol a selective agonist of ionotropic GABAA receptors on the process of developing active defensive and inhibitory conditioned reflexes in alert non-immobilized rabbits. It was found that phenibut, but not gaboxadol, accelerates the development of defensive reflexes at an early stage of conditioning. Both phenibut and gaboxadol facilitate the development of conditioned inhibition, but the effect of gaboxadol occurs at later stages of conditioning and is less stable than that of phenibut. The earlier and more stable effects of phenibut, as compared to gaboxadol, on storage in memory of the inhibitory significance of a stimulus may occur because GABAB receptors play the dominant role in the development of internal inhibition during an early stage of conditioning. On the other hand this may occur because the participation of both GABAA and GABAB receptors are essential to the process. We discuss the polyfunctionality of GABA receptors as a function of their structure and the positions of the relevant neurons in the brain as this factor can affect regulation of various types of psychological processes.

Este trabajo investiga el papel de los procesos inhibitorios en la discriminación realizada por el sistema nervioso de los humanos y los animales entre sucesos familiares y no familiares y significativos y no significativos. Se comparó los efectos de dos mediadores inhibitorios del ácido gamma-aminobutírico (GABA): 1) Phenibut, un agonista no selectivo de los receptores del GABAA ionotrópico y del GABAB metabotrópico y 2) gaboxadol, un agonista selectivo de los receptores del GABAA ionotrópico, sobre el desarrollo de reflejos condicionados de defensa activa e inhibitorios en conejos en alerta y no inmovilizados. Se encontró que el phenibut, pero no el gaboxadol, acelera el desarrollo de reflejos defensivos en una etapa temprana del condicionamiento. Tanto el phenibut como el Gaboxadol facilitaron el desarrollo de la inhibición condicionada, pero el efecto del gaboxadol ocurre en etapas tardías del condicionamiento y es menos estable que el del phenibut. Los efectos más estables y más tempranos del phenibut, en comparación con el gaboxadol, sobre el almacenaje en la memoria de la significación inhibitoria de un estímulo pueden deberse a que los receptores del GABAB tienen el papel dominante en el dearrollo de la inhibición interna durante la fase inicial del condicionamiento. Por otro lado esto puede deberse a que la participación de los receptores tanto del GABAA como del GABAB son esenciales para el proceso. Comentamos la multifuncionalidad de los receptores del GABA como función de su estructura y de las posiciones de las neuronas relevantes en el cerebro, dado que este factor puede afectar la regulación de varios tipos de procesos psicológicos.

Corresponding author
Correspondence concerning this article should be addressed to: Shulgina Galina I., Doctor of Biological Sciences, Leading Researcher, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117465 Moscow, Butlerova 5A. (Russia). Phone: 7 (495) 789 38 52 (w), 7 (495) 940 37 74 (h), 7 (905) 700 0502 (mob). E-mail:
Hide All
Allikmets, L. X., Rjago, L. K. (1983). Uchastie raznich neyromediatornich system v mekhanismakh deystviya proizvodnich GAMK. [Participation of different neurotransmitter systems in mechanisms of action of GABA derivatives]. Summary of papers from the All-USSR Symposium “Pharmacology of derived gamma-aminobutyric acid. Tartu, 25-27 May 1983, p.7.
Avoli, M. (1996). GABA-mediated synchronous potentials and seizure generation. Epilepsia, 37, 10351042.
Basyan, A. S. (2001). Vzaimodeystvie mediatornikh i neuromodulatornikh system golovnogo mozga i ikh vozmozhnaya rol' v formirovanii psikhofisiologicheskikh i psikhopatologicheskikh sostoyaniy. [Interaction of brain mediatory and neuromodulator systems and their possible role in formation of psychophysiological and psychopathological states]. Zhurnal uspekhi fiziologicheskikh Nauk, 32, 322.
Bormann, J., Hamill, O. P., Sakmann, B. (1987). Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultures spinal neurones. Journal Physiology, 385, 243286.
Brown, N., Kerby, J., Bonnert, T. P., Whiting, P.J., Wafford, K.A. (2002). Pharmacological characterization of a novel cell expressing human alpha(4)beta(3)delta GABAA receptors. British Journal of Pharmacology, 136, 965974.
Caraiscos, V. B., Elliott, E. M., You-Ten, K. E., Cheng, V. Y., Bellali, D., Newell, J. G. et al. , (2004). Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by a5 subunit-containing gamma-aminobutiric acid type A receptors. The Proceedings of the National Academy of Sciences of the USA, 101, 36623667.
Cheng, S. C., Brunner, E.A. (1985). Inducing anesthesia with a GABA analog, THIP. Anesthesiology, 63, 147151.
Clemente, C.D. (1968). Forebrain mechanisms related to internal inhibition and sleep. Conditional Reflex, 3, 145174.
Costa, E., Davis, J. M., Dong, E., Grayson, D. R., Guidotti, A., Tremolizzo, L., & Veldic, M. (2004). GABAergic cortical deficit dominates schizophrenia pathophysiology. Critical Review of Neurobiology, 16, 123.
Drew, C. A., Johnston, G. A., Weatherby, R.P. (1984). Bicucullineinsensitive GABA receptors: studies on the binding of (-)-baclofen to rat cerebellar membranes. Neuroscience Letters, 52, 317321.
Eccles, J.C. (1964). The physiology of synapses. Berlin: Springer.
Eccles, J.C. (1969). The inhibitory pathways of the central nervous system. London: Liverpool University Press.
Eccles, J. C., McGreer, P. L. (1979). Ionotropic and metabotropic neurotransmission. Trends in Neuroscience, 2, 3940.
Enomoto, T.F. & Ajmone-Marsan, C. (1959). Epileptic activation of single cortical neurons and their relationship with electroencephalographic discharges. Electroencephalography and Clinical Neurophysiology, 11, 199218.
Farrant, M. (2001) Amino Acids: Inhibitory. In Webster, R.A. (Ed.), Neurotransmitters, Drugs and Brain Function. Hoboken, NJ: John Wiley & Sons. (pp. 225250).
Faulhaber, J., Steiger, A., Lancel, M. (1997). The GABAA agonist THIP produces low wave sleep and reduces spindling activity in NREM sleep in humans. Psychopharmacology, 130, 285291.
Hill, D. R., Bowery, N.G. (1981). 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABA(B) sites in rat brain. Nature, 290 (5802), 149152.
Huckle, R. (2004). Gabaxadol. Current Opinion in Investigational Drugs. 5, 766773.
Johnston, G. A. R. (1996). GABAC receptors: relatively simple transmitter – gated ion channels. Trends in Pharmacological Sciences, 17, 319323.
Johnston, G. A. R. (2005). GABAA receptor channel pharmacology. Current Pharmaceutical Design, 11, 18671885.
Kalkman, H. O., Loetschar, E. (2003). GAD (67): the link between the GABA-deficit hypothesis and the dopaminergic- and glutamatergic theories of psychosis. Journal of Neural Transmission, 110, 803812.
Kaluev, A. V., Natt, D. Dj. (2003). O roli GAMK v patogeneze trevogy i depressii. [About the role of GABA in pathogenesis of anxiety and depression]. Vestnik biologicheskoy psikhiatrii, N° 12, 1016.
Khaunina, R. A., Lapin, I. P. (1989). Primenenie phenibuta v psichiatrii i nevrologii i ego mesto sredi drugikh psikhotropnikh sredstv. [Application of phenibut in psychiatry and neurology and its place among the other psychotropic preparates]. Zhurnal nevropatologii i Psikhhiatrii im. S. S. Korsakova. 89, 142151.
Krnjevic, K., Schwartz, S. (1967). The action of γ-aminobutiric acid on cortical neurons. Experimental Brain Research, 3, 320.
Krnjevic, K. (1974). Chemical nature of synaptic transmission in vertebrates. Physiological Review. 54, 418.
Krogsgaard, P., Frølund, B., Liljefars, T., Ebert, B. (2004). GABAA agonists and partial agonists: THIP (Gaboxadol) as a nonopioid analgesic and a novel type of hypnotic. Biochemical Pharmacology, 68, 15731580.
Krogsgaard, Larsen P., Frølund, B., Kristiansen, U., Frydenvang, K., Ebert, B. (1997). GABAA and GABAB receptor agonists, partial agonists, antagonists and modulators – design and therapeutic prospects. European Journal of Pharmaceutical Sciences, 5, 355384.
Lancel, M., Langabartels, A. (2000). Gamma – amino butyric acid (A) (GABAA) agonist 4,5,6,7-tetrahydroisoxsolo[4,5-c]pyridin-3-ol persistently increases sleep maintenance and intensity during chronic administration to rats. Journal of Pharmacology and. Experimental Therapy. 293, 10841090.
Lapin, I. (2001). Phenibut (beta-phenil-GABA): a tranquilizer and nootropic drug. CNS Drug Review. 7, 471481.
Lavalée, Ph., Urbain, N., Dufresne, C.Bokor, H., Acsády, L. & Deschênes, M. (2005). Feedforward inhibitory control of sensory information in higher-order thalamic nuclei. Journal of Neuroscience, 25, 74897498.
Lin, C.-S., Nicolelis, M. A. L., Schneider, J. S., & Chapin, J. K. (1990). A major direct GABAergic pathway from zona incerta to neocortex. Science, 248, 15531556.
Lloyd, K.G. (1986). La théorie GABAergique de l'epilepsie. Thérapeutique neurologique, 36 (5), 243254.
Lubow, R.E. (1989). Latent inhibition and conditioned-attention theory. Cambridge, UK: Cambridge University Press.
Lubow, R. E., & Gewirtz, J.C. (1995). Latent inhibition in humans: Data, theory, and implications for schizophrenia. Psychological Bulletin, 117, 87103.
Luscher, W. (2002). Basic pharmacology of valproate: A review after 35 years of clinical use for the treatment of epilepsy. Central Nervous System Drugs, 16, 669695.
Mashkovsky, M. D. (2002). Lekarstvennye sredstva [Pharmaceuticals]. Moscow.: Novaya Volna.
Mathias, S., Zihi, J., Steiger, A., Lancel, M. (2005). Effect of repeated gaboxadol administration on night sleep and next-day performance in healthy elderly subjects. Neuropsychopharmacology, 30, 833841.
McGreer, P. L., Eccles, J.C. & McGreereer, E. G. (1978). Molecular Neurobiology of the Mammalian Brain, N.Y.: Plenum Press
Mechilane, L. C., Ryago, L. K., Allikmets, L. X. (1990). Farmakologija i klinika fenibuta. [Pharmacology and clinic of phenibut]. Tartu: Tartu University Press
Moroni, F., Forchetti, M. C., Krogssgaard-Larsen, P., Guidotti, A. (1982). Relative disposition of the GABA agonists THIP and muscimol in the brain of the rat. Journal of Pharmacy and Pharmacology. 34, 676678.
Mortensen, M., Wafford, K. A., Wingrove, P., Ebert, B. (2003). Pharmacology of GABAA receptors exhibiting different levels of spontaneous activity. European Journal of Pharmacology, 476, 1724.
Onodera, S., Hicks, T. Ph. (1998). Projections from substantia nigra and zona incerta to the cat's nucleus of Darkschewitsch. Journal of Comparative Neurology, 396, 461482.
Pavlov, I.P. (1954). Lektsiya 22. Obschaya harakteristika dannogo issledovaniya, ego zadacha, ego trudnosti i nashi oshibki. [General description of the investigation, its problems, its hardships and our mistakes]. Izbrannye trudy. (Usievich, M. A., ed.), Moscow: Gosudarstvennoie Uchebno-pedagogicheskoe izdatelstvo MP RSFSR, (pp. 387401).
Pavlov, I.P. (1973). Dvadtsatiletniy opyt objektivnogo izucheniya vysshey nervnoy deiyatelnosti (povedeniya) zhivotnykh [Twenty years' experience with empirical study of higher nervous activity (behavior) in animals]. Moscow: Nauka.
Perekalin, V. V. & Zobacheva, M. M. (1959). Sintez gamma-amino kislot i pirrolidonov [The synthesis of gamma-amino acids and pyrrolidones] Zhurnal obschey khimii, 29, 29052910.
Rode, F., Jensen, D. G., Blackburn-Munro, G., Bjerrum, O.J. (2005). Centrally-mediated antinociceptive actions of GABAA receptor agonists in the rat spared nerve injury model of neuropathic pain. European Journal of Pharmacology, 516, 131138.
Rudolph, U.Crestani, F., Möler, H. (2001). GABAA receptor subtypes: dissecting their pharmacological functions. Trends in Pharmacological Sciences, 22, 188194.
Semyanov, A. V. (2002). GAMK-ergischeskoe tormozhenie v CNS: tipy GAMK – receptorov i mechanizmi tonischeskogo GAMK – oposredovannogo deystviya. [GABAergic inhibition in CNS: Types GABA – receptors and mechanisms of tonic GABA mediated inhibitory action]. Neurofisiologiya, 34, 8292.
Semyanov, A. V. (2004). Diffuse extrasynaptic neurotransmission by means of glutamate and GABA. Diffuznaya vnesinaptischeskaya neuroperedascha posredstvom glutamate i GAMK. Zhurnal vysshey nervnoy deyatelnosti. 54, 6884.
Shehab, S., McGonigle, D., Hughes, D. I., Todd, A. J., Redgrave, P. (2005). Anatomical evidence for an anticonvulsant relay in the rat ventromedial medulla. Journal of Neuroscience, 22, 1431.
Shmuilevisch, L. M., Kudrin, A. N. (1987). Gamma-aminomaclyanaya kislota i lekarstvennie preparati na ee osnove. [Gamma-aminobutiric acid and drugs containing it]. Farmatsiya, N° 4, 7680.
Shulgina, G. I. (1976). O funktsional'noyi roli medlennikh kolebaniyi potentsiala i uporyadoschennykh potokov impul'satsii. [On the functional role of potential slow oscillations and regular flows of action potentials]. Zhurnal uspekhi fiziologicheskikh nauk, 1, 4766.
Shulgina, G. I. (1987). K experimental'nomu i teoretischeskomu obosnovaniyu giperpolarizationnoy theorii vnutrennego tormozheniya. [Experimental and theoretical evidence of hyperpolarization theory of internal inhibition]. Zhurnal uspekhi fiziologischeskikh nauk. 18, 8097.
Shulgina, G. I. (2005). The neurophysiological validation of the hyperpolarization theory of internal inhibition. The Spanish Journal of Psychology, 8, 8699.
Shulgina, G. I., Ziablitseva, E. A.(2005). Vliyanie proizvodnogo GAMK phenibuta na obuschenie. [Influence of the GABA derivative phenibut on learning]. Vestnik rossyisky akademii meditsinskikh nauk, 2, 3540.
Shulgina, G. I., Petricheva, A. P., & Kuznetzova, G.G. (1985). Vliyanie proizvodnogo GAMK – fenibuta na povedenie i aktivnost' nevronov zritelnoy kory krolikov pri vyrabotke oboronitel'nogo refleksa i vnutrennego tormozheniya [Effect of the GABA-derivative – phenibut on the behavior and activity of neurons in the visual cortex of rabbits during conditioning of defensive reflex and internal inhibition]. Zhurnal vysshey nervnoi deyatelnosti, 25, 695702.
Sitinskiy, I. A. (1977). Gamma-aminomaslyanaya kislota – mediator tormozheniya. [Gamma-aminobutiric acid – mediator of inhibition]. Leningrad: Nauka..
Soriano, E., Frotscher, M. (1989). A GABAergic axo-axonic cell in the fascia dentata controls the main excitatory hippocampal pathway. Brain Research, 503, 170174.
Sperk, G., Schwarzer, C., Tsunashi, K., Kandlhover, S. (1998). Expression of GABAA receptor subunits in the hippocampus of the rat after kainic acid-induced seizures. Epilepsy Research, 32, 129139.
Steriade, M. (2005). Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends in Neuroscience, 28, 317324.
Steriade, M., Gloor, P., Llinas, R. R., Lopes de Silva, F. H., Mesulam, M.M. (1990). Basic mechanisms of cerebral rhythmic activities. Electroencephalography and clinical Neurophysiology, 76, 481508.
Sukhov, A. G. (1968). K voprosu o korkobikh tormoznikh neyronakh.[On cortical inhibitory neurons] Fiziologicheskiy zhurnal USSR, 54, 270275.
Talalaenko, A. N. (1989). Farmakologicheskiy analis anxiolititcheskogo deystviya proizvodnich bezodiazepina, GAMK i β- carbolina v razlitschikh (razlichnikh??) testakh naprjazheniya. [Pharmacological analyses of anxiolitic action of derivative of benzodiazepine, GABA, and β - carboline in different tests of stress-reaction]. Farmakologiya i toxikologiya. 52, 2629.
Tebecis, A.K. (1974). Transmitters and identified neurons in the mammal's central nervous system. Bristol UK: Scientechnica.
Trageser, J. C., Keller, A. (2004). Reducing the uncertainty: gating of peripheral inputs by zona incerta. Journal of Neuroscience, 24, 89118915.
Vaitl, D., Bauer, U., Schaler, G., Stark, R., Zimmerman, M.,& Kirsh, P. (2002). Latent inhibition and schizophrenia: Pavlovian conditioning of autonomic responses. Schizophrenia Research, 55, 147158.
Voronin, L. G., Sokolov, E. N. (1962). Korkovye mekhanizmy orientirovochnogo refleksa. Otnoshenie orientirovochnogo refleksa k uslovnomu refleksu [The cortical mechanisms of the orienting reflex. The relationship of the orienting reflex to the conditioned reflex]. In Elektroencefalograficheskoe issledovanie vysshey nervnoy deyatelnosti. [Electroencephalographic Research of the Higher Nervous Activity]. Moscow: Nauka, (pp. 310321).
Wassef, A., Baker, J., Kochan, LD.,(2003). GABA and schizophrenia: a review of basic science and clinical studies. Journal of Clinical Psychopharmacology, 3, 601640.
Ziablitseva, E. A., Shulgina, G. I. (The characteristics of the nootropic action of phenibut]. Zhurnal nevrologii i psikhiatrii im. S. S. Korsakova, 106, 5758.
Zorn, S.H., Enna, S.J. (1987). The GABA agonist THIP attenuates antinociception in the mouse by modifying central cholinergic transmission. Neuropharmacology, 26, 433437.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Spanish Journal of Psychology
  • ISSN: 1138-7416
  • EISSN: 1988-2904
  • URL: /core/journals/spanish-journal-of-psychology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed