Skip to main content Accesibility Help
×
×
Home

Naïve Tests of Basic Local Independence Model’s Invariance

  • Debora de Chiusole (a1), Luca Stefanutti (a1), Pasquale Anselmi (a1) and Egidio Robusto (a1)
Abstract

The basic local independence model (BLIM) is a probabilistic model for knowledge structures, characterized by the property that lucky guess and careless error parameters of the items are independent of the knowledge states of the subjects. When fitting the BLIM to empirical data, a good fit can be obtained even when the invariance assumption is violated. Therefore, statistical tests are needed for detecting violations of this specific assumption. This work provides an extension to theoretical results obtained by de Chiusole, Stefanutti, Anselmi, and Robusto (2013), showing that statistical tests based on the partitioning of the empirical data set into two (or more) groups are not adequate for testing the BLIM’s invariance assumption. A simulation study confirms the theoretical results.

Copyright
Corresponding author
*Correspondence concerning this article should be addressed to Debora de Chiusole. Università di Padova. FISPPA Department. Via Venenzia, 12. 35131. Padua (Italy). E- mail: deboratn@libero.it
References
Hide All
Andersen, E. B. (1973). A goodness of fit test for the Rasch model. Psychometrika, 38, 123140. http://dx.doi.org/10.1007/BF02291180
de la Torre, J., & Lee, Y.-S. (2010). A note on the invariance of the DINA model parameters. Journal of Educational Measurement, 47, 115127. http://dx.doi.org/10.1111/j.1745-3984.2009.00102.x
de Chiusole, D., Anselmi, P., Stefanutti, L., & Robusto, E. (2013). The gain-loss model: Bias and variance of the parameter estimates. Electronic Notes in Discrete Mathematics, 42, 3340.
de Chiusole, D., & Stefanutti, L. (2013). Modeling skill dependence in probabilistic competence structures. Electronic Notes in Discrete Mathematics, 42, 4148. http://dx.doi.org/10.1016/j.endm.2013.05.144
de Chiusole, D., Stefanutti, L., Anselmi, P., & Robusto, E. (2013). Assessing parameter invariance in the BLIM: Bipartition Models. Psychometrika, 78, 710724. http://dx.doi.org/10.1007/s11336-013-9325-5
Doignon, J.-P., & Falmagne, J.-C. (1985). Spaces for the assessment of knowledge. International Journal of Man-Machine Studies, 23, 175196. http://dx.doi.org/10.1016/S0020-7373(85)80031-6
Doignon, J.-P., & Falmagne, J.-C. (1999). Knowledge Spaces. Berlin, Heidelberg, and New York, NY: Springer-Verlag.
Falmagne, J.-C., & Doignon, J.-P. (1988a). A class of stochastic procedures for the assessment of knowledge. British Journal of Mathematical and Statistical Psychology, 41, 123. http://dx.doi.org/10.1111/j.2044-8317.1988.tb00884.x
Falmagne, J.-C., & Doignon, J.-P. (1988b). A Markovian procedure for assessing the state of a system. Journal of Mathematical Psychology, 32, 232258. http://dx.doi.org/10.1016/0022-2496(88)90011-9
Falmagne, J.-C., & Doignon, J.-P. (2011). Learning spaces. New York, NY: Springer.
Glas, C. A. W., & Verhelst, N. D. (1995). Testing the Rasch model. In Fischer, G. H. & Molenaar, I. W., editors, Rasch Models: Foundations, Recent Developments, and Applications. New York, NY: Springer.
Heller, J., Stefanutti, L., Anselmi, P., & Robusto, E. (2014). Cognitive diagnostic models and knowledge space theory. The non-missing link. Manuscript submitted for publication.
Heller, J., & Wickelmaier, F. (2013). Minimum discrepancy estimation in probabilistic knowledge structures. Electronic Notes in Discrete Mathematics, 42, 4956. http://dx.doi.org/10.1016/j.endm.2013.05.145
Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25, 258272. http://dx.doi.org/10.1177/01466210122032064
Robusto, E., Stefanutti, L., & Anselmi, P. (2010). The Gain-Loss Model: A probabilistic skill multimap model for assessing learning processes. Journal of Educational Measurement, 47, 373394. http://dx.doi.org/10.1111/j.1745-3984.2010.00119.x
Schrepp, M. (2005). About the connection between knowledge structures and latent class models. Methodology, 1, 93103. http://dx.doi.org/10.1027/1614-2241.1.3.93
Spoto, A., Stefanutti, L., & Vidotto, G. (2012). On the unidentifiability of a certain class of skill multi map based probabilistic knowledge structures. Journal of Mathematical Psychology, 56, 248255. http://dx.doi.org/10.1016/j.jmp.2012.05.001
Stefanutti, L., Heller, J., Anselmi, P., & Robusto, E. (2012). Assessing local identifiability of probabilistic knowledge structures. Behavior Research Methods, 44, 11971211. http://dx.doi.org/10.3758/s13428-012-0187-z
Stefanutti, L., & Robusto, E. (2009). Recovering a probabilistic knowledge structure by constraining its parameter space. Psychometrika, 74, 8396. http://dx.doi.org/10.1007/s11336-008-9095-7
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Spanish Journal of Psychology
  • ISSN: 1138-7416
  • EISSN: 1988-2904
  • URL: /core/journals/spanish-journal-of-psychology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed