Skip to main content
×
Home

Association Between ERCC2 Lys751Gln Polymorphism and Lung Cancer Risk: A Meta-Analysis Involving 23,370 Subjects

  • Xiang Tan (a1), Lei Xian (a1), Xinyu Chen (a2), Lijun Shi (a3), Yongyong Wang (a1), Jianji Guo (a1), Guanbiao Liang (a1), Zhenqing Zhao (a1) and Mingwu Chen (a1)...
Abstract

Recent studies report a correlation between excision repair cross-complementing group 2 (ERCC2) Lys751Gln polymorphism and an increased risk of lung cancer, but results are controversial and inconclusive. Thus, we conducted a comprehensive meta-analysis in order to assess the correlation between them. Our study uses an odds ratio (OR) with a 95% confidence interval (95% CI) to evaluate the strength of the association; we also performed Begg's funnel plot and the Egger's test to assess the publication bias of previous articles. Finally, our meta-analysis is comprised of 28 full studies, including 23,370 subjects (10,242 cases and 13,128 controls). Our overall research shows that ERCC2 Lys751Gln polymorphism carries an increased risk of developing lung cancer (C vs. A: OR = 1.160, 95% CI = 1.081–1.245, p = .000; CC vs. AA: OR = 1.252, 95% CI = 1.130–1.388, p = .000; CA vs. AA: OR = 1.152, 95% CI = 1.060–1.252, p = .001; CC+CA vs. AA: OR = 1.186, 95% CI = 1.089–1.292, p = .000; CC vs. CA+AA: OR = 1.196, 95% CI = 1.087–1.316, p = .000). In ethnic subgroup analyses, we find a significant risk among Caucasians (C vs. A: OR = 1.106, 95% CI = 1.048–1.166, p = .000; CC vs. AA: OR = 1.233, 95% CI = 1.103–1.378, p = .000; CC+CA vs. AA: OR = 1.113, 95% CI = 1.033–1.199, p = .005; CC vs. CA+AA: OR = 1.185, 95% CI = 1.069–1.313, p = .001) and among Asians under two genetic models (CA vs. AA: OR = 1.265, 95% CI = 1.034–1.549, p = .023; CC+CA vs. AA: OR = 1.252, 95% CI = 1.015–1.544, p = .036). These results were confirmed by similar findings, demonstrated by stratified analyses in study design and histological typing. This meta-analysis indicates that ERCC2 Lys751Gln polymorphism may lead to an increased susceptibility to lung cancer risk among Caucasians and Asians.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Association Between ERCC2 Lys751Gln Polymorphism and Lung Cancer Risk: A Meta-Analysis Involving 23,370 Subjects
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Association Between ERCC2 Lys751Gln Polymorphism and Lung Cancer Risk: A Meta-Analysis Involving 23,370 Subjects
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Association Between ERCC2 Lys751Gln Polymorphism and Lung Cancer Risk: A Meta-Analysis Involving 23,370 Subjects
      Available formats
      ×
Copyright
Corresponding author
address for correspondence: Mingwu Chen, Department of Cardiothoracic Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China. E-mail: chen535@126.com
References
Hide All
Benhamou S., & Sarasin A. (2002). ERCC2/XPD gene polymorphisms and cancer risk. Mutagenesis, 17, 463469.
Benhamou S., & Sarasin A. (2005). ERCC2/XPD gene polymorphisms and lung cancer: A HuGE review. American Journal of Epidemiology, 161, 114.
Bosco F., Castro D., & Briones M. R. (2012). Briones, neutral and stable equilibria of genetic systems and the Hardy-Weinberg principle: Limitations of the chi-square test and advantages of auto-correlation functions of allele frequencies. Frontiers in Genetics, 3, 276.
Chang J. S., Wrensch M. R., Hansen H. M., Sison J. D., Aldrich M. C., Quesenberry C. P., Jr., . . . Wiencke J. K. (2008). Nucleotide excision repair genes and risk of lung cancer among San Francisco Bay Area Latinos and African Americans. International Journal of Cancer, 123, 20952104.
Chen S., Tang D., Xue K., Xu L., Ma G., Hsu Y., & Cho S. S. (2002). DNA repair gene XRCC1 and XPD polymorphisms and risk of lung cancer in a Chinese population. Carcinogenesis, 23, 13211325.
David-Beabes G. L., Lunn R. M., & London S. J. (2001). No association between the XPD (Lys751G1n) polymorphism or the XRCC3 (Thr241Met) polymorphism and lung cancer risk. Cancer Epidemiology, Biomarkers & Prevention, 10, 911912.
De Ruyck K., Szaumkessel M., De Rudder I., Dehoorne A., Vral A., Claes K., . . . Thierens H. (2007). Polymorphisms in base-excision repair and nucleotide-excision repair genes in relation to lung cancer risk. Mutation Research, 631, 101110.
Deutsch-Wenzel R. P., Brune H., Grimmer G., Dettbarn G., & Misfeld J. (1983). Experimental studies in rat lungs on the carcinogenicity and dose-response relationships of eight frequently occurring environmental polycyclic aromatic hydrocarbons. Journal of the National Cancer Institute, 71, 539544.
Ding D. P., Ma W. L., He X. F., & Zhang Y. (2012). XPD Lys751Gln polymorphism and esophageal cancer susceptibility: A meta-analysis of case-control studies. Molecular Biology Reports, 39, 25332540.
Dong Y., Zhuang L., & Ma W. (2013). Comprehensive assessment of the association of ERCC2 Lys751Gln polymorphism with susceptibility to cutaneous melanoma. Tumour Biology, 34, 11551160.
Feng Z., Ni Y., Dong W., Shen H., & Du J. (2012). Association of ERCC2/XPD polymorphisms and interaction with tobacco smoking in lung cancer susceptibility: A systemic review and meta-analysis. Molecular Biology Reports, 39, 5769.
Harms C., Salama S. A., Sierra-Torres C. H., Cajas-Salazar N., & Au W. W. (2004). Polymorphisms in DNA repair genes, chromosome aberrations, and lung cancer. Environmental and Molecular Mutagenesis, 44, 7482.
Hemminki K., Xu G., Angelini S., Snellman E., Jansen C. T., Lambert B., & Hou S. M. (2001). XPD exon 10 and 23 polymorphisms and DNA repair in human skin in situ. Carcinogenesis, 22, 11851188.
Higgins J. P., Thompson S. G., Deeks J. J., & Altman D. G. (2003). Measuring inconsistency in meta-analyses. British Medical Journal, 327, 557560.
Hou S. M., Fält S., Angelini S., Yang K., Nyberg F., Lambert B., & Hemminki K. (2002). The XPD variant alleles are associated with increased aromatic DNA adduct level and lung cancer risk. Carcinogenesis, 23, 599603.
Hu Z., Wei Q., Wang X., & Shen H. (2004). DNA repair gene XPD polymorphism and lung cancer risk: A meta-analysis. Lung Cancer, 46, 110.
Hu Z., Xu L., Shao M., Yuan J., Wang Y., Wang F., . . . Shen H. (2006). Polymorphisms in the two helicases ERCC2/XPD and ERCC3/XPB of the transcription factor IIH complex and risk of lung cancer: A case-control analysis in a Chinese population. Cancer Epidemiology, Biomarkers & Prevention, 15, 13361340.
Hu K., Zhang Y., Wang R., Li G., Li G., & Zhang D. (2012). Current evidence on VEGF+405G/C polymorphism and malignancy susceptibility: A meta-analysis involving 30 studies. Twin Research and Human Genetics, 15, 496502.
Jemal A., Bray F., Center M. M., Ferlay J., Ward E., & Forman D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61, 6990.
Kiyohara C., Horiuchi T., Takayama K., & Nakanishi Y. (2012). Genetic polymorphisms involved in carcinogen metabolism and DNA repair and lung cancer risk in a Japanese population. Journal of Thoracic Oncology, 7, 954962.
Kiyohara C., & Yoshimasu K. (2007). Genetic polymorphisms in the nucleotide excision repair pathway and lung cancer risk: A meta-analysis. International Journal of Medical Sciences, 4, 5971.
Lau J., Ioannidis J. P., & Schmid C. H. (1997). Quantitative synthesis in systematic reviews. Annals of Internal Medicine, 127, 820826.
Liang G., Xing D., Miao X., Tan W., Yu C., Lu W., & Lin D. (2003). Sequence variations in the DNA repair gene XPD and risk of lung cancer in a Chinese population. International Journal of Cancer, 105, 669673.
López-Cima M. F., González-Arriaga P., García-Castro L., Pascual T., Marrón M. G., Puente X. S., & Tardón A. (2007). Polymorphisms in XPC, XPD, XRCC1, and XRCC3 DNA repair genes and lung cancer risk in a population of northern Spain. BMC Cancer, 7, 162.
Manuguerra M., Saletta F., Karagas M. R., Berwick M., Veglia F., Vineis P., & Matullo G. (2006). XRCC3 and XPD/ERCC2 single nucleotide polymorphisms and the risk of cancer: A HuGE review. American Journal of Epidemiology, 164, 297302.
Matullo G., Dunning A. M., Guarrera S., Baynes C., Polidoro S., Garte S., . . . Vineis P. (2006). DNA repair polymorphisms and cancer risk in non-smokers in a cohort study. Carcinogenesis, 27, 9971007.
Minelli C., Thompson J. R., Abrams K. R., Thakkinstian A., & Attia J. (2008). How should we use information about HWE in the meta-analyses of genetic association studies? International Journal of Epidemiology, 37, 136146.
Misra R. R., Ratnasinghe D., Tangrea J. A., Virtamo J., Andersen M. R., Barrett M., Taylor P. R., & Albanes D. (2003). Polymorphisms in the DNA repair genes XPD, XRCC1, XRCC3, and APE/ref-1, and the risk of lung cancer among male smokers in Finland. Cancer Letters, 191, 171178.
Osawa K., Miyaishi A., Uchino K., Osawa Y., Inoue N., Nakarai C., . . . Takahashi J. (2010). APEX1 Asp148Glu gene polymorphism is a risk factor for lung cancer in relation to smoking in Japanese. Asian Pacific Journal of Cancer Prevention, 11, 11811186.
Park J. Y., Lee S. Y., Jeon H. S., Park S. H., Bae N. C., Lee E. B., . . . Jung T. H. (2002). Lys751Gln polymorphism in the DNA repair gene XPD and risk of primary lung cancer. Lung Cancer, 36, 1516.
Peters J. L., Sutton A. J., Jones D. R., Abrams K. R., & Rushton L. (2006). Comparison of two methods to detect publication bias in meta-analysis. Journal of the American Medical Association, 295, 676680.
Popanda O., Schattenberg T., Phong C. T., Butkiewicz D., Risch A., Edler L., . . . Schmezer P. (2004). Specific combinations of DNA repair gene variants and increased risk for non-small cell lung cancer. Carcinogenesis, 25, 24332441.
Qian B., Zhang H., Zhang L., Zhou X., Yu H., & Chen K. (2011). Association of genetic polymorphisms in DNA repair pathway genes with non-small cell lung cancer risk. Lung Cancer, 73, 138146.
Qiao Y., Spitz M. R., Shen H., Guo Z., Shete S., Hedayati M., . . . Wei Q. (2002). Modulation of repair of ultraviolet damage in the host-cell reactivation assay by polymorphic XPC and XPD/ERCC2 genotypes. Carcinogenesis, 23, 295299.
Raaschou-Nielsen O., Sørensen M., Overvad K., Tjønneland A., & Vogel U. (2008). Polymorphisms in nucleotide excision repair genes, smoking and intake of fruit and vegetables in relation to lung cancer. Lung Cancer, 59, 171179.
Sakoda L. C., Loomis M. M., Doherty J. A., Julianto L., Barnett M. J., Neuhouser M. L., . . . Chen C. (2012). Germ line variation in nucleotide excision repair genes and lung cancer risk in smokers. International Journal of Molecular Epidemiology and Genetics, 3, 117.
Shen M., Berndt S. I., Rothman N., Demarini D. M., Mumford J. L., He X., . . . Lan Q. (2005). Polymorphisms in the DNA nucleotide excision repair genes and lung cancer risk in Xuan Wei, China. International Journal of Cancer, 116, 768773.
Spitz M. R., Wu X., Wang Y., Wang L. E., Shete S., Amos C. I., . . . Wei Q. (2001). Modulation of nucleotide excision repair capacity by XPD polymorphisms in lung cancer patients. Cancer Research, 61, 13541357.
Sreeja L., Syamala V. S., Syamala V., Hariharan S., Raveendran P. B., Vijayalekshmi R. V., . . . Ankathil R. (2008). Prognostic importance of DNA repair gene polymorphisms of XRCC1 Arg399Gln and XPD Lys751Gln in lung cancer patients from India. Journal of Cancer Research and Clinical Oncology, 134, 645652.
Stang A. (2010). Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. European Journal of Epidemiology, 25, 603605.
Tang M. S., Pierce J. R., Doisy R. P., Nazimiec M. E., & MacLeod M. C. (1992). Differences and similarities in the repair of two benzo[a]pyrene diol epoxide isomers induced DNA adducts by uvrA, uvrB, and uvrC gene products. Biochemistry, 31, 84298436.
Taylor E. M., Broughton B. C., Botta E., Stefanini M., Sarasin A., Jaspers N. G., . . . Lehmann A. R. (1997). Xeroderma pigmentosum and trichothiodystrophy are associated with different mutations in the XPD (ERCC2) repair/transcription gene. Proceedings of the National Academy of Sciences of the United States of America, 94, 86588663.
Vineis P., Manuguerra M., Kavvoura F. K., Guarrera S., Allione A., Rosa F., . . . Matullo G. (2009). A field synopsis on low-penetrance variants in DNA repair genes and cancer susceptibility. Journal of the National Cancer Institute, 101, 2436.
Vogel U., Laros I., Jacobsen N. R., Thomsen B. L., Bak H., Olsen A., . . . Raaschou-Nielsen O. (2004). Two regions in chromosome 19q13.2-3 are associated with risk of lung cancer. Mutation Research, 546, 6574.
Wang F., Chang D., Hu F. L., Sui H., Han B., Li D. D., & Zhao Y. S. (2008). DNA repair gene XPD polymorphisms and cancer risk: A meta-analysis based on 56 case-control studies. Cancer Epidemiology, Biomarkers & Prevention, 17, 507517.
Weber C. A., Salazar E. P., Stewart S. A., & Thompson L. H. (1990). ERCC2: cDNA cloning and molecular characterization of a human nucleotide excision repair gene with high homology to yeast RAD3. EMBO Journal, 9, 14371447.
Wei Q., Cheng L., Hong W. K., & Spitz M. R. (1996). Reduced DNA repair capacity in lung cancer patients. Cancer Research, 56, 41034107.
Xing D., Tan W., Wei Q., & Lin D. (2002). Polymorphisms of the DNA repair gene XPD and risk of lung cancer in a Chinese population. Lung Cancer, 38, 123129.
Yin Z., Ma R., Cui Z., Li M., He Q., & Zhou B. (2006a). Association of genetic polymorphism in the DNA repair gene XPD with risk of lung cancer in nonsmoking females. Zhongguo Fei Ai Za Zhi, 9, 492496.
Yin Z., Su M., Li X., Li M., Ma R., He Q., & Zhou B. (2009). ERCC2, ERCC1 polymorphisms and haplotypes, cooking oil fume and lung adenocarcinoma risk in Chinese non-smoking females. Journal of Experimental & Clinical Cancer Research, 28, 153.
Yin J., Vogel U., Ma Y., Guo L., Wang H., & Qi R. (2006b). Polymorphism of the DNA repair gene ERCC2 Lys751Gln and risk of lung cancer in a northeastern Chinese population. Cancer Genetics and Cytogenetics, 169, 2732.
Zandberga E., Kozirovskis V., Ābols A., Andrējeva D., Purkalne G., & Linē A. (2013). Cell-free microRNAs as diagnostic, prognostic, and predictive biomarkers for lung cancer. Genes Chromosomes Cancer, 52, 356369.
Zhan P., Wang Q., Wei S. Z., Wang J., Qian Q., Yu L. K., & Song Y. (2010). ERCC2/XPD Lys751Gln and Asp312Asn gene polymorphism and lung cancer risk: A meta-analysis involving 22 case-control studies. Journal of Thoracic Oncology, 5, 13371345.
Zhang R. C., & Mou S. H. (2013). Polymorphisms of excision repair gene XPD Lys751Gln and hOGG1 Ser326Cys might not be associated with hepatocellular carcinoma risk: A meta-analysis. Tumor Biology, 34, 901907.
Zhang J., Gu S. Y., Zhang P., Jia Z., & Chang J. H. (2010). ERCC2 Lys751Gln polymorphism is associated with lung cancer among Caucasians. European Journal of Cancer, 46, 24792484.
Zhou W., Liu G., Miller D. P., Thurston S. W., Xu L. L, Wain J. C., . . . Christiani D. C. (2002). Gene-environment interaction for the ERCC2 polymorphisms and cumulative cigarette smoking exposure in lung cancer. Cancer Research, 62, 13771381.
Zhou M., Wan H. Y., Gao B. L., Ding Y. J., & Jun R. X. (2012). Genetic polymorphisms of XPD and CDA and lung cancer risk. Oncology Letters, 4, 247251.
Zienolddiny S., Campa D., Lind H., Ryberg D., Skaug V., Stangeland L., . . . Haugen A. (2006). Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis, 27, 560567.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Twin Research and Human Genetics
  • ISSN: 1832-4274
  • EISSN: 1839-2628
  • URL: /core/journals/twin-research-and-human-genetics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 6
Total number of PDF views: 93 *
Loading metrics...

Abstract views

Total abstract views: 199 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd November 2017. This data will be updated every 24 hours.