Skip to main content Accessibility help
×
×
Home

Assembly and disassembly of a retinal cholinergic network

  • KEVIN J. FORD (a1) and MARLA B. FELLER (a1)
Abstract

In the few weeks prior to the onset of vision, the retina undergoes a dramatic transformation. Neurons migrate into position and target appropriate synaptic partners to assemble the circuits that mediate vision. During this period of development, the retina is not silent but rather assembles and disassembles a series of transient circuits that use distinct mechanisms to generate spontaneous correlated activity called retinal waves. During the first postnatal week, this transient circuit is comprised of reciprocal cholinergic connections between starburst amacrine cells. A few days before the eyes open, these cholinergic connections are eliminated as the glutamatergic circuits involved in processing visual information are formed. Here, we discuss the assembly and disassembly of this transient cholinergic network and the role it plays in various aspects of retinal development.

Copyright
Corresponding author
*Address correspondence and reprint requests to: Marla B. Feller Associate Professor, Department of Molecular and Cell Biology & Helen Wills Neuroscience Institute University of California, Berkeley 142 Life Sciences Addition - 3200 Berkeley, CA 94720-3200, USA
References
Hide All
Acosta, M.L., Chua, J. & Kalloniatis, M. (2007). Functional activation of glutamate ionotropic receptors in the developing mouse retina. The Journal of Comparative Neurology 500, 923941.
Alger, B.E. & Nicoll, R.A. (1980). Epileptiform burst afterhyperolarization: Calcium-dependent potassium potential in hippocampal CA1 pyramidal cells. Science 210, 11221124.
Baldridge, W.H. (1996). Optical recordings of the effects of cholinergic ligands on neurons in the ganglion cell layer of mammalian retina. The Journal of Neuroscience 16, 50605072.
Bansal, A., Singer, J.H., Hwang, B.J., Xu, W., Beaudet, A. & Feller, M.B. (2000). Mice lacking specific nicotinic acetylcholine receptor subunits exhibit dramatically altered spontaneous activity patterns and reveal a limited role for retinal waves in forming ON and OFF circuits in the inner retina. The Journal of Neuroscience 20, 76727681.
Barkis, W.B., Ford, K.J. & Feller, M.B. (2010). Non-cell-autonomous factor induces the transition from excitatory to inhibitory GABA signaling in retina independent of activity. Proceedings of the National Academy of Sciences of the United States of America 107, 2230222307.
Ben-Ari, Y. & Spitzer, N.C. (2010). Phenotypic checkpoints regulate neuronal development. Trends in Neurosciences 33, 485492.
Blankenship, A.G. & Feller, M.B. (2010). Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nature Reviews. Neuroscience 11, 1829.
Blankenship, A.G., Ford, K.J., Johnson, J., Seal, R.P., Edwards, R.H., Copenhagen, D.R. & Feller, M.B. (2009). Synaptic and extrasynaptic factors governing glutamatergic retinal waves. Neuron 62, 230241.
Blazynski, C. (1989). Displaced cholinergic, GABAergic amacrine cells in the rabbit retina also contain adenosine. Visual Neuroscience 3, 425431.
Bodnarenko, S.R. & Chalupa, L.M. (1993). Stratification of ON and OFF ganglion cell dendrites depends on glutamate-mediated afferent activity in the developing retina. Nature 364, 144146.
Bodnarenko, S.R., Jeyarasasingam, G. & Chalupa, L.M. (1995). Development and regulation of dendritic stratification in retinal ganglion cells by glutamate-mediated afferent activity. The Journal of Neuroscience 15, 70377045.
Bodnarenko, S.R., Yeung, G., Thomas, L. & McCarthy, M. (1999). The development of retinal ganglion cell dendritic stratification in ferrets. Neuroreport 10, 29552959.
Brandon, C. & Criswell, M.H. (1995). Displaced starburst amacrine cells of the rabbit retina contain the 67-kDa isoform, but not the 65-kDa isoform, of glutamate decarboxylase. Visual Neuroscience 12, 10531061.
Briggman, K.L., Helmstaedter, M. & Denk, W. (2011). Wiring specificity in the direction-selectivity circuit of the retina. Nature 471, 183188.
Catsicas, M., Bonness, V., Becker, D. & Mobbs, P. (1998). Spontaneous Ca2+ transients and their transmission in the developing chick retina. Current Biology 8, 283286.
Chen, D., Opavsky, R., Pacal, M., Tanimoto, N., Wenzel, P., Seeliger, M.W., Leone, G. & Bremner, R. (2007). Rb-mediated neuronal differentiation through cell-cycle-independent regulation of E2f3a. PLoS Biology 5, e179.
Cohen, E.D. (2001). Voltage-gated calcium and sodium currents of starburst amacrine cells in the rabbit retina. Visual Neuroscience 18, 799809.
Cook, J.E. & Chalupa, L.M. (2000). Retinal mosaics: New insights into an old concept. Trends in Neurosciences 23, 2634.
Coombs, J.L., Van Der List, D. & Chalupa, L.M. (2007). Morphological properties of mouse retinal ganglion cells during postnatal development. The Journal of Comparative Neurology 503, 803814.
Demas, J., Eglen, S.J. & Wong, R.O.L. (2003). Developmental loss of synchronous spontaneous activity in the mouse retina is independent of visual experience. The Journal of Neuroscience 23, 28512860.
Dhingra, N.K., Ramamohan, Y. & Raju, T.R. (1997). Developmental expression of synaptophysin, synapsin I and syntaxin in the rat retina. Brain Research. Developmental Brain Research 102, 267273.
Dmitrieva, N.A., Strang, C.E. & Keyser, K.T. (2007). Expression of alpha 7 nicotinic acetylcholine receptors by bipolar, amacrine, and ganglion cells of the rabbit retina. The Journal of Histochemistry & Cytochemistry 55, 461476.
Drenhaus, U., Morino, P. & Veh, R.W. (2003). On the development of the stratification of the inner plexiform layer in the chick retina. The Journal of Comparative Neurology 460, 112.
Elshatory, Y., Everhart, D., Deng, M., Xie, X., Barlow, R.B. & Gan, L. (2007). Islet-1 controls the differentiation of retinal bipolar and cholinergic amacrine cells. The Journal of Neuroscience 27, 1270712720.
Elstrott, J., Anishchenko, A., Greschner, M., Sher, A., Litke, A.M., Chichilnisky, E.J. & Feller, M.B. (2008). Direction selectivity in the retina is established independent of visual experience and cholinergic retinal waves. Neuron 58, 499506.
Elstrott, J. & Feller, M.B. (2010). Direction-selective ganglion cells show symmetric participation in retinal waves during development. The Journal of Neuroscience 30, 1119711201.
Famiglietti, E.V. Jr. (1983). ‘Starburst’ amacrine cells and cholinergic neurons: Mirror-symmetric ON and OFF amacrine cells of rabbit retina. Brain Research 261, 138144.
Famiglietti, E.V. & Sundquist, S.J. (2010). Development of excitatory and inhibitory neurotransmitters in transitory cholinergic neurons, starburst amacrine cells, and GABAergic amacrine cells of rabbit retina, with implications for previsual and visual development of retinal ganglion cells. Visual Neuroscience 27, 1942.
Farajian, R., Raven, M.A., Cusato, K. & Reese, B.E. (2004). Cellular positioning and dendritic field size of cholinergic amacrine cells are impervious to early ablation of neighboring cells in the mouse retina. Visual Neuroscience 21, 1322.
Feldheim, D.A. & O’Leary, D.D. (2010). Visual map development: Bidirectional signaling, bifunctional guidance molecules, and competition. Cold Spring Harbor Perspectives in Biology 2, a001768.
Feller, M.B., Butts, D.A., Aaron, H.L., Rokhsar, D.S. & Shatz, C.J. (1997). Dynamic processes shape spatiotemporal properties of retinal waves. Neuron 19, 293306.
Feller, M.B., Wellis, D.P., Stellwagen, D., Werblin, F.S. & Shatz, C.J. (1996). Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272, 11821187.
Fischer, K.F., Lukasiewicz, P.D. & Wong, R.O. (1998). Age-dependent and cell class-specific modulation of retinal ganglion cell bursting activity by GABA. The Journal of Neuroscience 18, 37673778.
Fisher, L.J. (1979). Development of synaptic arrays in the inner plexiform layer of neonatal mouse retina. The Journal of Comparative Neurology 187, 359372.
Ford, K.J., Felix, A.L. & Feller, M.B. (2010). The Role of Starburst Amacrine Cells in Initiating Retinal Waves. Program No. 335.6. 2010 Neuroscience Meeting Planner. San Diego, CA: Society for Neuroscience.
Fried, S.I., Münch, T.A. & Werblin, F.S. (2002). Mechanisms and circuitry underlying directional selectivity in the retina. Nature 420, 411414.
Galli-Resta, L., Novelli, E. & Viegi, A. (2002). Dynamic microtubule-dependent interactions position homotypic neurones in regular monolayered arrays during retinal development. Development 129, 38033814.
Galli-Resta, L., Novelli, E., Volpini, M. & Strettoi, E. (2000). The spatial organization of cholinergic mosaics in the adult mouse retina. The European Journal of Neuroscience 12, 38193822.
Galli-Resta, L., Resta, G., Tan, S.S. & Reese, B.E. (1997). Mosaics of islet-1-expressing amacrine cells assembled by short-range cellular interactions. The Journal of Neuroscience 17, 78317838.
Gavrikov, K.E., Nilson, J.E., Dmitriev, A.V., Zucker, C.L. & Mangel, S.C. (2006). Dendritic compartmentalization of chloride cotransporters underlies directional responses of starburst amacrine cells in retina. Proceedings of the National Academy of Sciences of the United States of America 103, 1879318798.
Godfrey, K.B. & Swindale, N.V. (2007). Retinal wave behavior through activity-dependent refractory periods. PLoS Computational Biology 3, e245.
Godinho, L., Mumm, J.S., Williams, P.R., Schroeter, E.H., Koerber, A., Park, S.W., Leach, S.D. & Wong, R.O. (2005). Targeting of amacrine cell neurites to appropriate synaptic laminae in the developing zebrafish retina. Development 132, 50695079.
Greiner, J.V. & Weidman, T.A. (1981). Histogenesis of the ferret retina. Experimental Eye Research 33, 315332.
Gunhan, E., Choudary, P.V., Landerholm, T.E. & Chalupa, L.M. (2002). Depletion of cholinergic amacrine cells by a novel immunotoxin does not perturb the formation of segregated on and off cone bipolar cell projections. The Journal of Neuroscience 22, 22652273.
Hamassaki-Britto, D.E., Gardino, P.F., Hokoc, J.N., Keyser, K.T., Karten, H.J., Lindstrom, J.M. & Britto, L.R. (1994). Differential development of alpha-bungarotoxin-sensitive and alpha-bungarotoxin-insensitive nicotinic acetylcholine receptors in the chick retina. The Journal of Comparative Neurology 347, 161170.
Hanganu, I.L., Ben-Ari, Y. & Khazipov, R. (2006). Retinal waves trigger spindle bursts in the neonatal rat visual cortex. The Journal of Neuroscience 26, 67286736.
Hayden, S.A., Mills, J.W. & Masland, R.M. (1980). Acetylcholine synthesis by displaced amacrine cells. Science 210, 435437.
Hennig, M.H., Adams, C., Willshaw, D. & Sernagor, E. (2009). Early-stage waves in the retinal network emerge close to a critical state transition between local and global functional connectivity. The Journal of Neuroscience 29, 10771086.
Hinds, J.W. & Hinds, P.L. (1983). Development of retinal amacrine cells in the mouse embryo: Evidence for two modes of formation. The Journal of Comparative Neurology 213, 123.
Hoover, F. & Goldman, D. (1992). Temporally correlated expression of nAChR genes during development of the mammalian retina. Experimental Eye Research 54, 561571.
Huberman, A.D., Feller, M.B. & Chapman, B. (2008 a). Mechanisms underlying development of visual maps and receptive fields. Annual Review of Neuroscience 31, 479509.
Huberman, A.D., Manu, M., Koch, S.M., Susman, M.W., Lutz, A.B., Ullian, E.M., Baccus, S.A. & Barres, B.A. (2008 b). Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells. Neuron 59, 425438.
Huberman, A.D., Wei, W., Elstrott, J., Stafford, B.K., Feller, M.B. & Barres, B.A. (2009). Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion. Neuron 62, 327334.
Hutchins, J.B., Bernanke, J.M. & Jefferson, V.E. (1995). Acetylcholinesterase in the developing ferret retina. Experimental Eye Research 60, 113125.
Johnson, J., Tian, N., Caywood, M.S., Reimer, R.J., Edwards, R.H. & Copenhagen, D.R. (2003). Vesicular neurotransmitter transporter expression in developing postnatal rodent retina: GABA and glycine precede glutamate. The Journal of Neuroscience 23, 518529.
Kaneda, M., Ito, K., Morishima, Y., Shigematsu, Y. & Shimoda, Y. (2007). Characterization of voltage-gated ionic channels in cholinergic amacrine cells in the mouse retina. Journal of Neurophysiology 97, 42254234.
Kay, J.N., Roeser, T., Mumm, J.S., Godinho, L., Mrejeru, A., Wong, R.O. & Baier, H. (2004). Transient requirement for ganglion cells during assembly of retinal synaptic layers. Development 131, 13311342.
Kerschensteiner, D., Morgan, J.L., Parker, E.D., Lewis, R.M. & Wong, R.O. (2009). Neurotransmission selectively regulates synapse formation in parallel circuits in vivo. Nature 460, 10161020.
Kerschensteiner, D. & Wong, R.O.L. (2008). A precisely timed asynchronous pattern of ON and OFF retinal ganglion cell activity during propagation of retinal waves. Neuron 58, 851858.
Keyser, K.T., MacNeil, M.A., Dmitrieva, N., Wang, F., Masland, R.H. & Lindstrom, J.M. (2000). Amacrine, ganglion, and displaced amacrine cells in the rabbit retina express nicotinic acetylcholine receptors. Visual Neuroscience 17, 743752.
Kim, I.B., Lee, E.J., Kim, M.K., Park, D.K. & Chun, M.H. (2000). Choline acetyltransferase-immunoreactive neurons in the developing rat retina. The Journal of Comparative Neurology 427, 604616.
Kim, I.-J., Zhang, Y., Meister, M. & Sanes, J.R. (2010). Laminar restriction of retinal ganglion cell dendrites and axons: Subtype-specific developmental patterns revealed with transgenic markers. The Journal of Neuroscience 30, 14521462.
Kim, I.J., Zhang, Y., Yamagata, M., Meister, M. & Sanes, J.R. (2008). Molecular identification of a retinal cell type that responds to upward motion. Nature 452, 478482.
Komuro, H. & Kumada, T. (2005). Ca2+ transients control CNS neuronal migration. Cell Calcium 37, 387393.
Koschak, A., Reimer, D., Huber, I., Grabner, M., Glossmann, H., Engel, J. & Striessnig, J. (2001). alpha 1D (Cav1.3) subunits can form l-type Ca2+ channels activating at negative voltages. The Journal of Biological Chemistry 276, 2210022106.
Koulen, P., Malitschek, B., Kuhn, R., Wässle, H. & Brandstätter, J.H. (1996). Group II and group III metabotropic glutamate receptors in the rat retina: Distributions and developmental expression patterns. The European Journal of Neuroscience 8, 21772187.
Lancaster, B. & Adams, P.R. (1986). Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. Journal of Neurophysiology 55, 12681282.
Lee, S., Kim, K. & Zhou, Z.J. (2010). Role of ACh-GABA cotransmission in detecting image motion and motion direction. Neuron 68, 11591172.
MacNeil, M.A., Heussy, J.K., Dacheux, R.F., Raviola, E. & Masland, R.H. (1999). The shapes and numbers of amacrine cells: Matching of photofilled with Golgi-stained cells in the rabbit retina and comparison with other mammalian species. The Journal of Comparative Neurology 413, 305326.
Martins, R.A.P. & Pearson, R.A. (2008). Control of cell proliferation by neurotransmitters in the developing vertebrate retina. Brain Research 1192, 3760.
Masland, R.H. (2001). The fundamental plan of the retina. Nature Neuroscience 4, 877886.
Masland, R.H. & Ames, A. III. (1976). Responses to acetylcholine of ganglion cells in an isolated mammalian retina. Journal of Neurophysiology 39, 12201235.
Masland, R.H., Mills, J.W. & Cassidy, C. (1984). The functions of acetylcholine in the rabbit retina. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character 223, 121139.
Matsuoka, R.L., Nguyen-Ba-Charvet, K.T., Parray, A., Badea, T.C., Chédotal, A. & Kolodkin, A.L. (2011). Transmembrane semaphorin signalling controls laminar stratification in the mammalian retina. Nature 470, 259263.
Mehta, V. & Sernagor, E. (2006). Early neural activity and dendritic growth in turtle retinal ganglion cells. The European Journal of Neuroscience 24, 773786.
Meister, M., Wong, R.O., Baylor, D.A. & Shatz, C.J. (1991). Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252, 939943.
Mooney, R., Penn, A.A., Gallego, R. & Shatz, C.J. (1996). Thalamic relay of spontaneous retinal activity prior to vision. Neuron 17, 863874.
Mumm, J.S., Williams, P.R., Godinho, L., Koerber, A., Pittman, A.J., Roeser, T., Chien, C.B., Baier, H. & Wong, R.O. (2006). In vivo imaging reveals dendritic targeting of laminated afferents by zebrafish retinal ganglion cells. Neuron 52, 609621.
Novelli, E., Resta, V. & Galli-Resta, L. (2005). Mechanisms controlling the formation of retinal mosaics. Progress in Brain Research 147, 141153.
O’Malley, D.M. & Masland, R.H. (1989). Co-release of acetylcholine and gamma-aminobutyric acid by a retinal neuron. Proceedings of the National Academy of Sciences of the United States of America 86, 34143418.
Ozaita, A., Petit-Jacques, J., Völgyi, B., Ho, C.S., Joho, R.H., Bloomfield, S.A. & Rudy, B. (2004). A unique role for Kv3 voltage-gated potassium channels in starburst amacrine cell signaling in mouse retina. The Journal of Neuroscience 24, 73357343.
Pearson, R., Catsicas, M., Becker, D. & Mobbs, P. (2002). Purinergic and muscarinic modulation of the cell cycle and calcium signaling in the chick retinal ventricular zone. The Journal of Neuroscience 22, 75697579.
Penn, A.A., Riquelme, P.A., Feller, M.B. & Shatz, C.J. (1998). Competition in retinogeniculate patterning driven by spontaneous activity. Science 279, 21082112.
Putzier, I., Kullmann, P.H.M., Horn, J.P. & Levitan, E.S. (2009). Cav1.3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons. The Journal of Neuroscience 29, 1541415419.
Reese, B.E. & Galli-Resta, L. (2002). The role of tangential dispersion in retinal mosaic formation. Progress in Retinal & Eye Research 21, 153168.
Reese, B.E., Raven, M.A., Giannotti, K.A. & Johnson, P.T. (2001). Development of cholinergic amacrine cell stratification in the ferret retina and the effects of early excitotoxic ablation. Visual Neuroscience 18, 559570.
Roska, B. & Werblin, F. (2001). Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature 410, 583587.
Sah, P. & Isaacson, J.S. (1995). Channels underlying the slow afterhyperpolarization in hippocampal pyramidal neurons: Neurotransmitters modulate the open probability. Neuron 15, 435441.
Sarter, M., Parikh, V. & Howe, W.M. (2009). Phasic acetylcholine release and the volume transmission hypothesis: Time to move on. Nature Reviews. Neuroscience 10, 383390.
Schmidt, M., Humphrey, M.F. & Wässle, H. (1987). Action and localization of acetylcholine in the cat retina. Journal of Neurophysiology 58, 9971015.
Sernagor, E., Eglen, S.J. & O’Donovan, M.J. (2000). Differential effects of acetylcholine and glutamate blockade on the spatiotemporal dynamics of retinal waves. The Journal of Neuroscience 20, RC56.
Sernagor, E., Eglen, S.J. & Wong, R.O. (2001). Development of retinal ganglion cell structure and function. Progress in Retinal & Eye Research 20, 139174.
Sernagor, E. & Grzywacz, N.M. (1996). Influence of spontaneous activity and visual experience on developing retinal receptive fields. Current Biology 6, 15031508.
Sernagor, E., Young, C. & Eglen, S.J. (2003). Developmental modulation of retinal wave dynamics: Shedding light on the GABA saga. The Journal of Neuroscience 23, 76217629.
Sharma, R.K. & Ehinger, B. (1997). Mitosis in developing rabbit retina: An immunohistochemical study. Experimental Eye Research 64, 97106.
Singer, J.H., Mirotznik, R.R. & Feller, M.B. (2001). Potentiation of L-type calcium channels reveals nonsynaptic mechanisms that correlate spontaneous activity in the developing mammalian retina. The Journal of Neuroscience 21, 85148522.
Spira, A.W., Millar, T.J., Ishimoto, I., Epstein, M.L., Johnson, C.D., Dahl, J.L. & Morgan, I.G. (1987). Localization of choline acetyltransferase-like immunoreactivity in the embryonic chick retina. The Journal of Comparative Neurology 260, 526538.
Spitzer, N.C., Root, C.M. & Borodinsky, L.N. (2004). Orchestrating neuronal differentiation: Patterns of Ca2+ spikes specify transmitter choice. Trends in Neurosciences 27, 415421.
Stacy, R.C., Demas, J., Burgess, R.W., Sanes, J.R. & Wong, R.O.L. (2005). Disruption and recovery of patterned retinal activity in the absence of acetylcholine. The Journal of Neuroscience 25, 93479357.
Stacy, R.C. & Wong, R.O.L. (2003). Developmental relationship between cholinergic amacrine cell processes and ganglion cell dendrites of the mouse retina. The Journal of Comparative Neurology 456, 154166.
Stafford, B.K., Sher, A., Litke, A.M. & Feldheim, D.A. (2009). Spatial-temporal patterns of retinal waves underlying activity-dependent refinement of retinofugal projections. Neuron 64, 200212.
Stellwagen, D., Shatz, C.J. & Feller, M.B. (1999). Dynamics of retinal waves are controlled by cyclic AMP. Neuron 24, 673685.
Strang, C.E., Andison, M.E., Amthor, F.R. & Keyser, K.T. (2005). Rabbit retinal ganglion cells express functional alpha7 nicotinic acetylcholine receptors. American Journal of Physiology. Cell Physiology 289, C644C655.
Sun, C., Warland, D.K., Ballesteros, J.M., van der List, D. & Chalupa, L.M. (2008). Retinal waves in mice lacking the β2 subunit of the nicotinic acetylcholine receptor. Proceedings of the National Academy of Sciences of the United States of America 105, 1363813643.
Syed, M.M., Lee, S., He, S. & Zhou, Z.J. (2004 a). Spontaneous waves in the ventricular zone of developing mammalian retina. Journal of Neurophysiology 91, 19992009.
Syed, M.M., Lee, S., Zheng, J. & Zhou, Z.J. (2004 b). Stage-dependent dynamics and modulation of spontaneous waves in the developing rabbit retina. The Journal of Physiology, 560, 533549.
Tauchi, M. & Masland, R.H. (1984). The shape and arrangement of the cholinergic neurons in the rabbit retina. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character 223, 101119.
Taylor, W.R. & Vaney, D.I. (2003). New directions in retinal research. Trends in Neurosciences 26, 379385.
Torborg, C.L. & Feller, M.B. (2005). Spontaneous patterned retinal activity and the refinement of retinal projections. Progress in Neurobiology 76, 213235.
Vaney, D.I. (1984). ‘Coronate’ amacrine cells in the rabbit retina have the ‘starburst’ dendritic morphology. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character 220, 501508.
Vaney, D.I. (1990). The Mosaic of Amacrine Cells in the Mammalian Retina. Oxford: Pergamon Press. ROYAUME-UNI.
Vogalis, F., Furness, J.B. & Kunze, W.A. (2001). Afterhyperpolarization current in myenteric neurons of the guinea pig duodenum. Journal of Neurophysiology 85, 19411951.
Voinescu, P.E., Emanuela, P., Kay, J.N. & Sanes, J.R. (2009). Birthdays of retinal amacrine cell subtypes are systematically related to their molecular identity and soma position. The Journal of Comparative Neurology 517, 737750.
Wang, C.-T., Blankenship, A.G., Anishchenko, A., Elstrott, J., Fikhman, M., Nakanishi, S. & Feller, M.B. (2007). GABA(A) receptor-mediated signaling alters the structure of spontaneous activity in the developing retina. The Journal of Neuroscience 27, 91309140.
Wang, M.M., Janz, R., Belizaire, R., Frishman, L.J. & Sherry, D.M. (2003). Differential distribution and developmental expression of synaptic vesicle protein 2 isoforms in the mouse retina. The Journal of Comparative Neurology 460, 106122.
Warland, D.K., Huberman, A.D. & Chalupa, L.M. (2006). Dynamics of spontaneous activity in the fetal macaque retina during development of retinogeniculate pathways. The Journal of Neuroscience 26, 51905197.
Wassle, H. (2004). Parallel processing in the mammalian retina. Nature Reviews. Neuroscience 5, 747757.
Wei, W., Hamby, A.M., Zhou, K. & Feller, M.B. (2011). Development of asymmetric inhibition underlying direction selectivity in the retina. Nature 469, 402406.
West Greenlee, M.H., Finley, S.K., Wilson, M.C., Jacobson, C.D. & Sakaguchi, D.S. (1998). Transient, high levels of SNAP-25 expression in cholinergic amacrine cells during postnatal development of the mammalian retina. The Journal of Comparative Neurology 394, 374385.
Wong, R.O. (1995). Cholinergic regulation of [Ca2+]i during cell division and differentiation in the mammalian retina. The Journal of Neuroscience 15, 26962706.
Wong, R.O. & Collin, S.P. (1989). Dendritic maturation of displaced putative cholinergic amacrine cells in the rabbit retina. The Journal of Comparative Neurology 287, 164178.
Wong, R.O., Meister, M. & Shatz, C.J. (1993). Transient period of correlated bursting activity during development of the mammalian retina. Neuron 11, 923938.
Wong, W.T., Myhr, K.L., Miller, E.D. & Wong, R.O. (2000). Developmental changes in the neurotransmitter regulation of correlated spontaneous retinal activity. The Journal of Neuroscience 20, 351360.
Wong, R.O. & Oakley, D.M. (1996). Changing patterns of spontaneous bursting activity of on and off retinal ganglion cells during development. Neuron 16, 10871095.
Wong, W.T., Sanes, J.R. & Wong, R.O. (1998). Developmentally regulated spontaneous activity in the embryonic chick retina. The Journal of Neuroscience 18, 88398852.
Wong, W.T. & Wong, R.O. (2001). Changing specificity of neurotransmitter regulation of rapid dendritic remodeling during synaptogenesis. Nature Neuroscience 4, 351352.
Xu, H.P., Chen, H., Ding, Q., Xie, Z.H., Chen, L., Diao, L., Wang, P., Gan, L., Crair, M.C. & Tian, N. (2010). The immune protein CD3zeta is required for normal development of neural circuits in the retina. Neuron 65, 503515.
Xu, H. & Tian, N. (2004). Pathway-specific maturation, visual deprivation, and development of retinal pathway. The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology & Psychiatry 10, 337346.
Yamagata, M. & Sanes, J.R. (2008). Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina. Nature 451, 465469.
Zhang, L.L., Fina, M.E. & Vardi, N. (2006 a). Regulation of KCC2 and NKCC during development: Membrane insertion and differences between cell types. The Journal of Comparative Neurology 499, 132143.
Zhang, L.L., Pathak, H.R., Coulter, D.A., Freed, M.A. & Vardi, N. (2006 b). Shift of intracellular chloride concentration in ganglion and amacrine cells of developing mouse retina. Journal of Neurophysiology 95, 24042416.
Zheng, J.J., Lee, S. & Zhou, Z.J. (2004). A developmental switch in the excitability and function of the starburst network in the mammalian retina. Neuron 44, 851864.
Zheng, J., Lee, S. & Zhou, Z.J. (2006). A transient network of intrinsically bursting starburst cells underlies the generation of retinal waves. Nature Neuroscience 9, 363371.
Zhou, Z.J. (1998). Direct participation of starburst amacrine cells in spontaneous rhythmic activities in the developing mammalian retina. The Journal of Neuroscience 18, 41554165.
Zhou, Z.J. & Fain, G.L. (1996). Starburst amacrine cells change from spiking to nonspiking neurons during retinal development. Proceedings of the National Academy of Sciences of the United States of America 93, 80578062.
Zhou, Z.J. & Zhao, D. (2000). Coordinated transitions in neurotransmitter systems for the initiation and propagation of spontaneous retinal waves. The Journal of Neuroscience 20, 65706577.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed