Skip to main content Accesibility Help

Psychophysical estimation of the best illumination for appreciation of Renaissance paintings


A variety of light sources are used in museum environments where the main concern is to prevent damaging effects of the light on paintings. Yet, the visual impression of an artistic painting is strongly influenced by the intensity and spectral profile of the illumination. The aim of this work was to determine psychophysically the spectral profile of the illumination preferred by observers when seeing paintings dated from the Renaissance époque and to investigate how their preferences correlate with the color temperature of the illumination and with the chromatic diversity of the paintings. Hyperspectral images of five oil paintings on wood were collected at the museum and the appearance of the paintings under five representative illuminants computed. Chromatic diversity was estimated by computing the representation of the paintings in the CIELAB color space and by counting the number of nonempty unit cubes occupied by the corresponding color volume. A paired-comparison experiment using precise cathode ray tube (CRT) reproductions of the paintings rendered with several illuminant pairs with different color temperatures was carried out to determine observers' preference. The illuminant with higher color temperature was always preferred except for one pair where no clear preference was expressed. The preferred illuminant produced the larger chromatic diversity, and for the condition where no specific illuminant was preferred the number of colors produced by the illuminant pair was very similar, a result suggesting that preference could have been influenced by chromatic diversity.

Corresponding author
Address correspondence and reprint requests to: Sérgio M. C. Nascimento, Department of Physics, Minho University, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail:
Hide All


Arend, L. & Reeves, A. (1986). Simultaneous color constancy. Journal of the Optical Society of America A 3, 17431751.
Berns, R.S. (2001). The science of digitizing paintings for color-accurate image archives: A review. Journal of Imaging Science and Technology 45, 305325.
Brill, T.B. (1980). Light: Its Interactions with Art and Antiques. New York: Plenum Press.
Carvalhal, M.J.A.T.d. (2004). Digitalização de pintura artística com imagiografia hiperespectral. M.Sc. Thesis, Universidade do Minho, Braga, Portugal.
Davis, R.G. & Ginthner, D.N. (1990). Correlated color temperature, illuminance level, and the Kruithof curve. Journal of the Illuminating Engineering Society 19, 2738.
Fairchild, M.D. (2005). Color Appearance Models. New York: John Wiley and Sons.
Fairchild, M.D. & Reniff, L. (1995). Time-course of chromatic adaptation for color-appearance judgments. Journal of the Optical Society of America A 12, 824833.
Foster, D.H., Nascimento, S.M.C., & Amano, K. (2004). Information limits on neural identification of colored surfaces in natural scenes. Visual Neuroscience 21, 331336.
Kemp, M. (1990). The Science of Art: Optical Themes in Western Art from Brunelleschi to Seurot. New Haven, CT: Yale University Press.
Linhares, J.M.M., Nascimento, S.M.C., Foster, D.H., & Amano, K. (2004). Chromatic diversity of natural scenes. Perception 33, 6565.
Luo, M.R., Cui, G., & Rigg, B. (2001). The development of the CIE 2000 colour-difference formula: CIEDE2000. Color Research and Application 26, 340350.
Nassau, K. (1998). Color for Science, Art and Technology. Amsterdam: Elsevier Science B.V.
Pointer, M.R. & Attridge, G.G. (1998). The number of discernible colours. Color Research and Application 23, 5254.
Scuello, M., Abramov, I., Gordon, J., & Weintraub, S. (2004a). Museum lighting: Why are some illuminants preferred? Journal of the Optical Society of America A 21, 306311.
Scuello, M., Abramov, I., Gordon, J., Weintraub, S., & Weintra, S. (2004b). Museum lighting: Optimizing the illuminant. Color Research and Application 29, 121127.
Taft, W.S., Mayer, J.W., Newman, R., Stulik, D., & Kuniholm, P. (2000). The Science of Paintings. New York: Springer-Verlag.
Thomson, G. (1986). The Museum Environment. Oxford: Butterworth-Heinemann.
Turner, J. (1996). The Dictionary of Art. London, UK: Macmillan Publishers.
Uchikawa, K. & Ikeda, M. (1981). Temporal deterioration of wavelength discrimination with successive comparison method. Vision Research 21, 591595.
Werner, A., Sharpe, L.T., & Zrenner, E. (2000). Asymmetries in the time-course of chromatic adaptation and the significance of contrast. Vision Research 40, 11011113.
Wyszecki, G. & Stiles, W.S. (1982). Color Science: Concepts and Methods, Quantitative Data and Formulae. New York: John Wiley and Sons.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed