Skip to main content Accessibility help

Visual pigments of Baltic Sea fishes of marine and limnic origin



Absorbance spectra of rods and some cones were measured by microspectrophotometry in 22 fish species from the brackish-water of the Baltic Sea, and when applicable, in the same species from the Atlantic Ocean (3 spp.), the Mediterranean Sea (1 sp.), or Finnish fresh-water lakes (9 spp.). The main purpose was to study whether there were differences suggesting spectral adaptation of rod vision to different photic environments during the short history (<104 years) of postglacial isolation of the Baltic Sea and the Finnish lakes. Rod absorbance spectra of the Baltic subspecies/populations of herring (Clupea harengus membras), flounder (Platichthys flesus), and sand goby (Pomatoschistus minutus) were all long-wavelength-shifted (9.8, 1.9, and 5.3 nm, respectively, at the wavelength of maximum absorbance, λmax) compared with their truly marine counterparts, consistent with adaptation for improved quantum catch, and improved signal-to-noise ratio of vision in the Baltic light environment. Judged by the shape of the spectra, the chromophore was pure A1 in all these cases; hence the differences indicate evolutionary tuning of the opsin. In no species of fresh-water origin did we find significant opsin-based spectral shifts specific to the Baltic populations, only spectral differences due to varying A1/A2 chromophore ratio in some. For most species, rod λmax fell within a wavelength range consistent with high signal-to-noise ratio of vision in the spectral conditions prevailing at depths where light becomes scarce in the respective waters. Exceptions were sandeels in the Baltic Sea, which are active only in bright light, and all species in a “brown” lake, where rod λmax lay far below the theoretically optimal range.


Corresponding author

Address correspondence and reprint requests to: Mirka Jokela-Määttä, Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland, Division of Physiology, P.O. Box 65 (Viikinkaari 1), FI-00014 University of Helsinki, Finland. E-mail:


Hide All


Ala-Laurila, P., Albert, R-J., Saarinen, P., Koskelainen, A. & Donner, K. (2003). The thermal contribution to photoactivation in A2 visual pigments studied by temperature effects on spectral properties. Visual Neuroscience 20, 411419.
Ala-Laurila, P., Donner, K. & Koskelainen, A. (2004b). Thermal activation and photoactivation of visual pigments. Biophysical Journal 86, 36533662.
Ala-Laurila, P., Pahlberg, J., Koskelainen, A. & Donner, K. (2004a). On the relation between the photoactivation energy and the absorbance spectrum of visual pigments. Vision Research 44, 21532158.
Ala-Laurila, P., Saarinen, P., Albert, R., Koskelainen, A. & Donner, K. (2002). Temperature effects on spectral properties of red and green rods in toad retina. Visual Neuroscience 19, 781792.
Ali, M.A. & Wagner, H.J. (1975). Visual pigments: Phylogeny and ecology. In Vision in fishes. New Approaches in Research, ed. Ali, M.A., pp. 481516. New York: Plenum Press.
Allen, D.M. & McFarland, W.N. (1972). Effect of temperature on rhodopsin-porphyropsin ratios in a fish. Vision Research 13, 13031309.
Barlow, H.B. (1957). Purkinje shift and retinal noise. Nature 179, 255256.
Baylor, D.A., Matthews, G. & Yau, K.W. (1980). Two components of electrical dark noise in toad retinal rod outer segments. Journal of Physiology 309, 591621.
Blaxter, J.H.S. (1964). Spectral sensitivity of the herring Clupea harengus L. The Journal of Experimental Biology 41, 155162.
Bowmaker, J.K., Dartnall, H.J.A. & Herring, P.J. (1988). Longwave-sensitive visual pigments in some deep-sea fishes: Segregation of “paired” rhodopsins and porphyropsins. Journal of Comparative Physiology A 163, 685698.
Britt, L.L., Loew, E.R. & McFarland, W.N. (2001). Visual pigments in the early life stages of Pacific northwest marine fishes. The Journal of Experimental Biology 204, 25812587.
Collette, B.B. (1977). Systematics and Zoogeography of the fishes of the family Percidae. Journal of the Fisheries Research Board of Canada 34, 14501463.
Cooper, J.A. & Chapleau, F. (1998). Monophyly and intrarelationships of the family Pleuronectidae (Pleuronectiformes), with a revised classification. Fishery Bulletin 96, 686726.
Dartnall, H.J.A. & Lythgoe, J.N. (1965). The spectral clustering of visual pigments. Vision Research 5, 81100.
Dartnall, H.J.A. (1972). Photosensitivity. In Handbook of Sensory Physiology VII/: Photochemistry of Vision, ed. Dartnall, H.J.A., pp. 122145. Berlin: Springer-Verlag.
Dartnall, H.J.A., Lander, M.R. & Munz, F.W. (1961). Periodic changes in the visual pigment of a fish. In Progress in Photobiology, eds. Christensen, B. & Buchmann, B., pp. 203213. Amsterdam: Elsevier.
Donner, K., Firsov, M.L. & Govardovskii, V.I. (1990). The frequency of isomerization-like”dark” events in rhodopsin and porphyropsin rods of the bull-frog retina. Journal of Physiology 428, 673692.
Engström, K. (1963). Cone types and cone arrangement in teleost retina. Acta Zoologica 44, 179243.
Firsov, M.L., Govardovskii, V.I. & Donner, K. (1994). Response univariance in bull-frog rods with two visual pigments. Vision Research 34, 839847.
Govardovskii, V.I., Fyhrquist, N., Reuter, T., Kuzmin, D.G. & Donner, K. (2000). In search of the visual pigment template. Visual Neuroscience 17, 509528.
Hárosi, F.I. (1994). An analysis of two spectral properties of vertebrate visual pigments. Vision Research 34, 13591367.
Jerlov, N.G. (1968). Optical Oceanography. London: Elsevier.
Jokela, M., Vartio, A., Paulin, L., Fyhrquist-Vanni, N. & Donner, K. (2003). Polymorphism of the rod visual pigment between allopatric populations of the sand goby (Pomatoschistus minutus): A microspectrophotometric study. The Journal of Experimental Biology 206, 26112617.
Kefalov, V., Fu, Y., Marsh-Armstrong, N. & Yau, K.-W. (2003). Role of visual pigment properties in rod and cone phototransduction. Nature 425, 526531.
Liebman, P.A. & Entine, G. (1968). Visual pigments of frog and tadpole. Vision Research 8, 761775.
Lindström, M. (2000). Eye function of Mysidacea (Crustacea) in the northern Baltic Sea. Journal of Experimental Marine Biology and Ecology 246, 85101.
Loew, E.R. & Lythgoe, J.N. (1978). The ecology of cone pigments in teleost fishes. Vision Research 18, 715722.
Lythgoe, J.N. (1979). The Ecology of Vision. Oxford: Clarendon Press.
MacNichol, E.F.Jr. (1986). A unifying presentation of photopigment spectra. Vision Research 26, 15431556.
Pahlberg, J., Lindström, M., Ala-Laurila, P., Fyhrquist-Vanni, N., Koskelainen, A. & Donner, K. (2005). The photoactivation energy of the visual pigment in two spectrally different populations of Mysis relicta (Crustacea, Mysida). Journal of Comparative Physiology A 191, 837844.
Parmanne, R. & Sjöblom, V. (1984). Sillikalat. In Suomen eläimet, ed. Koli, L., pp. 8097. Espoo: Weilin+Göös (In Finnish).
Parry, J.W.L., Peirson, S.N., Wilkens, H. & Bowmaker, J.K. (2003). Multiple photopigments from the Mexican blind cavefish, Astyanax fasciatus: a microspectrophotometric study. Vision Research 43, 3141.
Shand, J., Hart, N.S., Thomas, N. & Partridge, J.C. (2002). Developmental changes in the cone visual pigment of black bream Acanthopagrus butcheri. Journal of Experimental Biology 205, 36613667.
Tsin, A.T.C. & Beatty, D.D. (1980). Visual pigments and vitamins A in the adult bullfrog. Experimental Eye Research 30, 143153.
Whitehead, P.J.P., Nelson, G.J. & Wongratana, T. (1988). Chirocentridae, Clupeidae and Pristigasteridae. FAO species catalogue. Vol. 7. Clupeoid fishes of the world (Suborder Clupeoidei): An annotated and illustrated catalogue of the herrings, sardines pilchards, sprats, shads, anchovies and wolfherrings (FAO Fisheries Synopsis) pp. 305379. The Stationery Office Books.
Winslade, P. (1974). Behavioural studies on the lesser sandeel Ammodytes marinus (Raitt) II. The effect of light intensity on activity. Journal of Fish Biology 6, 577586.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed