Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-01T19:12:38.624Z Has data issue: false hasContentIssue false

Identifying associations among sterile oat (Avena sterilis) infestation level, landscape characteristics, and crop yields

Published online by Cambridge University Press:  20 January 2017

Carlos Escribano
Affiliation:
Centro de Ciencias Medioambientales, CSIC, Serrano 115 B, 28006 Madrid, Spain
César Fernández-Quintanilla
Affiliation:
Centro de Ciencias Medioambientales, CSIC, Serrano 115 B, 28006 Madrid, Spain

Abstract

Information on weed spatial distribution could improve weed management decisions. Herbicide use could be reduced if applied only to field zones with an infestation level higher than a specific economic threshold. In this study, we surveyed 31 winter barley fields in different regions of Spain to describe the spatial distribution of sterile oat and to analyze the relationship between sterile oat infestation level and landscape and crop yield attributes. Elevation and slope angle, crop yield and slope aspect were the main factors in order of importance in explaining the distribution of sterile oat. In general, greater infestation levels were observed in flat lowland and concave landscapes, with a low crop yield, and on northern exposures (when slope ≥ 2%). We could define field zones with a higher risk (> 6 times probability) of having sterile oat problems. High-probability zones, defined by topographic attributes alone, occupied 24% of the total area and contained 46% of the high infestation levels, whereas zones defined by topographic and crop yield attributes constituted 14% of the total area and contained 31% of the infestation.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Barroso, J., Navarrete, L., Sanchez Del Arco, M. J., Fernandez-Quintanilla, C., Lutman, P. J. W., Perry, N. H., and Hulls, R. J. 2006. Dispersal of Avena fatua and A. sterilis by natural dissemination, soil tillage and combine harvesters. Weed Res. 46:118128.CrossRefGoogle Scholar
Barroso, J., Ruiz, D., Fernández-Quintanilla, C., Leguizamon, E. S., Hernaiz, P., Ribeiro, A., Diaz, B., Maxwell, B. D., and Rew, L. J. 2005. Comparison of sampling methodologies for site-specific management of Avena sterilis . Weed Res. 45:110.CrossRefGoogle Scholar
Bishop, T. F. A. 2003. Geodata processing methods for site-specific crop management. Ph.D. dissertation. University of Sydney, NSW, Australia. Pp. 153179.Google Scholar
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. 1984. Classification and Regression Trees. Belmont, CA: Wadsworth International.Google Scholar
Burton, M. G., Mortensen, D. A., and Marx, D. B. 2005. Environmental characteristics affecting Helianthus annuus distribution in a maize production system. Agric. Ecosyst. Environ. 111:3040.CrossRefGoogle Scholar
Cardina, J., Johnson, G. A., and Sparrow, D. H. 1997. The nature and consequence of weed spatial distribution. Weed Sci. 45:364373.CrossRefGoogle Scholar
Cussans, G. W. 1980. Strategic planning for weed control—a researcher's view. Pages 823831 in Proceedings 1980 British Crop Protection Conference—Weeds. Brighton, Great Britain: British Crop Protection Council.Google Scholar
Faechner, T., Hall, L. M., and MacMillan, R. 2000. Landscape influence on sterile oat (Avena fatua) distribution. Weed Sci. Soc. Am. Abstr. 40:101102.Google Scholar
Forcella, F. 1993. Value of managing within-field variability. Pages 125132 in Robert, P. C., Rust, R. H., and Larson, W. E. eds. Proceedings of Soil Specific Crop Management: A Workshop on Research and Development Issues. Madison, WI: ASA-CSSA-SSA.Google Scholar
García-Baudin, J. and Salto, T. 1978. Importancia y distribución del género Avena en España. Pages 376390 in Proceedings of the 1st Mediterranean Symposium on Herbicides. Madrid, Spain: Ministerio de Agricultura y Agrupación Española de Plaguicidas.Google Scholar
Gerhards, R. and Christensen, S. 2003. Real-time weed detection, decision making and patch spraying in maize, sugar beet, winter wheat, and winter barley. Weed Res. 43:385392.CrossRefGoogle Scholar
Gerhards, R., Oebel, H., and Dicke, D. 2005. Practical experiences with a system for site-specific weed control using real-time image analysis and GPS-controlled patch spraying (TURBO). in Proceeding 13th Symposium European Weed Research Society (Published on CD). Bari, Italy: European Weed Research Society.Google Scholar
Gessler, P. E., Chadwick, O. A., Chamran, F., Althouse, L., and Holmes, K. 2000. Modeling soil-landscape and ecosystem properties using terrain attributes. Soil Sci. Soc. Am. J. 64:20462056.CrossRefGoogle Scholar
Greenacre, M. J. 1984. Theory and Applications of Correspondence Analysis. London: Academic Press.Google Scholar
Lamb, D. W. and Brown, R. B. 2001. Remote sensing and mapping of weeds in crops. J. Agric. Eng. Res. 78:117125.CrossRefGoogle Scholar
Pennock, D. J., Zebarth, B. J., and De Jong, E. 1987. Landform classification and soil distribution in hummocky terrain, Saskatchewan, Canada:. Geoderma. 40:297315.CrossRefGoogle Scholar
Recasens, J., Aibar, J., Forn, R., Riba, F., Taberner, A., Izquierdo, J., Ochoa, M. J., and Zaragoza, C. 1990. Distribution and abundance of the species of the genus Avena as weeds in winter cereals in the northeast of Spain. Pages 7784 in Proceedings Symposium Integrated Weed Management in Cereals. Helsinki, Finland: European Weed Research Society.Google Scholar
Rew, L. J. and Cousens, R. D. 2001. Spatial distribution of weeds in arable crops: are current sampling and analytical methods appropriate? Weed Res. 41:118.CrossRefGoogle Scholar
Ruiz, D. 2005. Spatial distribution of Avena sterilis L. in cereal fields: causes and management implications. Ph.D. dissertation. Universidad Autó noma de Madrid, Madrid, Spain.Google Scholar
Ruiz, D., Barroso, J., and Fernández-Quintanilla, C. 2002. Associations among soil properties and winter sterile oat (Avena sterilis L.) abundance in cereal fields. Pages 346348 in Proceedings 2002 of the 12th European Weed Research Symposium. Wageningen, The Netherlands: European Weed Research Society.Google Scholar
Ruiz, D., Escribano, C., and Fernández-Quintanilla, C. 2006. Assessing the opportunity for site-specific management of Avena sterilis in winter barley fields in Spain. Weed Res. 46:379387.CrossRefGoogle Scholar
Saavedra, M., Cuevas, J., Mesa-Garcia, J., and Garcia-Torres, L. 1989. Grassy weeds in winter cereals in southern Spain. Crop Prot. 8:181187.CrossRefGoogle Scholar
Steinmann, H. H. and Klingebiel, L. 2004. Secondary dispersal, spatial dynamics and effects of herbicides on reproductive capacity of a recently introduced population of Bromus sterilis in an arable field. Weed Res. 44:388396.CrossRefGoogle Scholar
Torner, C., González-Andújar, J. L., and Férnandez-Quintanilla, C. 1991. Wild oat (Avena sterilis L.) competition with winter barley: plant density effects. Weed Res. 31:301307.CrossRefGoogle Scholar
Van Oost, K., Van Muysen, W., Govers, G., Heckrath, G., Quine, T. A., and Poesen, J. 2003. Simulation of the redistribution by tillage on complex topographies. Eur. J. Soil Sci. 54:6376.CrossRefGoogle Scholar