Skip to main content

Multiple Resistance to Herbicides from Four Site-of-Action Groups in Waterhemp (Amaranthus tuberculatus)

  • Michael S. Bell (a1), Aaron G. Hager (a1) and Patrick J. Tranel (a1)

In 2006 and 2007, farmers from two counties in Illinois reported failure to control waterhemp with glyphosate. Subsequent onsite field experiments revealed that the populations might be resistant to multiple herbicides. Greenhouse experiments therefore were conducted to confirm glyphosate resistance, and to test for multiple resistance to other herbicides, including atrazine, acifluorfen, lactofen, and imazamox. In glyphosate dose-response experiments, both populations responded similarly to a previously characterized glyphosate-resistant population (MO1). Both Illinois populations also demonstrated high frequencies of resistance to the acetolactate synthase (ALS) inhibitor, imazamox. Additionally, one of the populations demonstrated high frequencies of resistance to both atrazine and the protoporphyrinogen oxidase (PPO) inhibitor, lactofen. Furthermore, using combinations of sequential and tank-mix herbicide applications, individual plants resistant to herbicides spanning all four site-of-action groups were identified from one population. Molecular experiments were performed to provide an initial characterization of the resistance mechanisms and to provide confirmation of the presence of multiple resistance traits within the two populations. Both populations contained the W574L ALS mutation and the ΔG210 PPO mutation, previously shown to confer resistance to ALS and PPO inhibitors, respectively. Atrazine resistance in both populations is suspected to be metabolism-based, because a triazine target-site mutation was not identified. A P106S EPSPS mutation, previously reported to confer glyphosate resistance, was identified in one population. This mutation was identified in both resistant and sensitive plants from the population; however, and so more research is needed to determine the glyphosate-resistance mechanism(s). This is the first known case of a weed population in the United States possessing multiple resistance to herbicides from four site-of-action groups.

Corresponding author
Corresponding author's E-mail:
Hide All
Baerson S. R., Rodriguez D. J., Tran M., Feng Y., Biest N. A., and Dill G. M. 2002. Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol. 129:12651275.
Bernards M. L., Crespo R. J., Kruger G. R., Gaussoin R. E., and Tranel P. J. 2012. A waterhemp (Amaranthus tuberculatus) population resistant to 2,4-D. Weed Sci. 60:379384.
Doyle J. J. and Doyle J. L. 1990. Isolation of plant DNA from fresh tissue. Focus 12:1315.
Foes M. J., Liu L., Tranel P. J., Wax L. M., and Stoller E. W. 1998. A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides. Weed Sci. 46:514520.
Gaines T. A., Zhang W., Wang D., Bukun B., Chisholm S. T., Shaner D. L., Nissen S. J., Patzoldt W. L., Tranel P. J., Culpepper A. S., Grey T. L., Webster T. M., Vencill W. K., Sammons R. D., Jiang J., Preston C., Leach J. E., and Westra P. 2010. Gene amplification confers glyphosate resistance in Amaranthus palmeri . Proc. Natl. Acad. Sci. U. S. A. 107:10291034.
Green J. M. 1989. Herbicide antagonism at the whole plant level. Weed Technol. 3:217226.
Hausman N. E., Singh S., Tranel P. J., Riechers D. E., Kaundun S. S., Polge N. D., Thomas D. A., and Hager A. G. 2011. Resistance to HPPD-inhibiting herbicides in a population of waterhemp (Amaranthus tuberculatus) from Illinois, United States. Pest Manag. Sci. 67:258261.
Jasieniuk M., Ahmad R., Sherwood A. M., Firestone J. L., Perez-Jones A., Lanini W. T., Mallory-Smith C., and Stednick Z. 2008. Glyphosate-resistant Italian ryegrass (Lolium multiflorum) in California: distribution, response to glyphosate, and molecular evidence for an altered target enzyme. Weed Sci. 56:496502.
Knezevic S. Z., Streibig J. C., and Ritz C. 2007. Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol. 21:840848.
Legleiter T. R. and Bradley K. W. 2008. Glyphosate and multiple herbicide resistance in common waterhemp (Amaranthus rudis) populations from Missouri. Weed Sci. 56:582587.
McMullan P. M. and Green J. M. 2011. Identification of a tall waterhemp (Amaranthus tuberculatus) biotype resistant to HPPD-inhibiting herbicides, atrazine, and thifensulfuron in Iowa. Weed Technol. 25:514518.
Ott R. L. and Longnecker M. 2001. An Introduction to Statistical Methods and Data Analysis. 5th ed. Pacific Grove, CA Duxbury. 1152 p.
Patzoldt W. L., Dixon B. S., and Tranel P. J. 2003. Triazine resistance in Amaranthus tuberculatus (Moq.) Sauer that is not site-of-action mediated. Pest Manag. Sci. 59:11341142.
Patzoldt W. L., Hager A. G., McCormick J. S., and Tranel P. J. 2006. A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. Proc. Natl. Acad. Sci. U. S. A. 103:1232912334.
Patzoldt W. L. and Tranel P. J. 2007. Multiple ALS mutations confer herbicide resistance in waterhemp (Amaranthus tuberculatus). Weed Sci. 55:421428.
Patzoldt W. L., Tranel P. J., and Hager A. G. 2002. Variable herbicide responses among Illinois waterhemp (Amaranthus rudis and A. tuberculatus) populations. Crop Prot. 21:707712.
Patzoldt W. L., Tranel P. J., and Hager A. G. 2005. A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Sci. 53:3036.
Sauer J. D. 1955. Revision of the dioecious amaranths. Madroño 13:546.
Sauer J. D. 1957. Recent migration and evolution of the dioecious amaranths. Evolution 11:1131.
Seefeldt S. S., Jensen J. E., and Fuerst E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9:218227.
Steckel L. E. 2007. The dioecious Amaranthus spp.: here to stay. Weed Technol. 21:567570.
Thinglum K. A., Riggins C. W., Davis A. S., Bradley K. W., Al-Khatib K., and Tranel P. J. 2011. Wide distribution of the waterhemp (Amaranthus tuberculatus) ΔG210 PPX2 mutation, which confers resistance to PPO-inhibiting herbicides. Weed Sci. 59:2227.
Tranel P. J., Riggins C. W., Bell M. S., and Hager A. G. 2011. Herbicide resistances in Amaranthus tuberculatus: a call for new options. J. Agric. Food Chem. 59:58085812.
Tranel P. J. and Trucco F. 2009. 21st-century weed science: a call for Amaranthus genomics. Pp. 149161 in Stewart C. N., ed. Weedy and Invasive Plant Genomics. Ames, IA Blackwell.
Tranel P. J. and Wright T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci. 50:700712.
Wakelin A. M. and Preston C. 2006. A target-site mutation is present in a glyphosate-resistant Lolium rigidum population. Weed Res. 46:432440.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Weed Science
  • ISSN: 0043-1745
  • EISSN: 1550-2759
  • URL: /core/journals/weed-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 1
Total number of PDF views: 23 *
Loading metrics...

Abstract views

Total abstract views: 119 *
Loading metrics...

* Views captured on Cambridge Core between 20th January 2017 - 24th January 2018. This data will be updated every 24 hours.