Hostname: page-component-797576ffbb-bqjwj Total loading time: 0 Render date: 2023-12-07T10:17:30.629Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Herbicidal Activity of Brassicaceae Seed Meal on Wild Oat (Avena fatua), Italian Ryegrass (Lolium multiflorum), Redroot Pigweed (Amaranthus retroflexus), and Prickly Lettuce (Lactuca serriola)

Published online by Cambridge University Press:  20 January 2017

Maxwell Handiseni*
Department of Plant Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339
Jack Brown
Department of Plant Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339
Robert Zemetra
Department of Plant Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339
Mark Mazzola
USDA-ARS, 1104 N. Western Avenue, Wenatchee, WA 98801
Corresponding author's E-mail:


The need for sustainable agricultural-production systems has generated demand for effective, nonsynthetic, alternative weed-control strategies. For some vegetable crops there are few herbicide options available, and there is little prospect of new herbicides being registered for vegetable crops. Brassicaceae seed meal, a residue product of the seed oil extraction process, can provide a resource for supplemental nutrients, disease control, and weed suppression. The objective of this study was to evaluate the effect of different Brassicaceae seed meals and application rates on the emergence of wild oat, Italian ryegrass, prickly lettuce, and redroot pigweed, which are some of the major weeds in vegetable production systems. White mustard seed, Indian mustard seed, and rapeseed meals were used with (intact) or without a functional myrosinase enzyme (denatured). Intact white mustard seed meals applied at a rate of 2000 kg ha−1 significantly reduced weed seedling emergence and weed dry biomass compared with intact rapeseed-meal–amended treatments. Indian mustard showed significantly better herbicidal efficacy on the grassy weeds than did white mustard, which was most effective in controlling broadleaf weeds. In all instances, a 1000 kg ha−1 application rate of either Indian mustard or white mustard exhibited greater herbicidal effect than did the 2000 kg ha−1 application rate of rapeseed meal. These results demonstrate that all glucosinolates are not equal in herbicidal effects. The herbicidal effects of the mustard seed meal could offer vegetable growers a new option for weed control, particularly in organic production systems. In practice, it would seem feasible to treat soils with a blend of Indian mustard and white mustard seed meals so that both grass and broadleaf weeds could be effectively controlled.

La necesidad de sistemas de producción agrícola sostenibles ha generado una demanda por estrategias alternativas de control de malezas que sean efectivas pero no sintéticas. Para algunos cultivos hortícolas hay pocas opciones disponibles de herbicidas, y hay muy pocos prospectos de que nuevos herbicidas sean registrados para estos cultivos. La semilla molida de Brassicaceae es un producto residual del proceso de extracción de aceite de la semilla que puede proporcionar un recurso como suplemento de nutrientes, control de enfermedades y supresión de malezas. El objetivo de este estudio fue evaluar el efecto de diferentes tipos de semilla molida de Brassicaceae y de sus dosis de aplicación en la emergencia de Avena fatua, Lolium multiflorum, Lactuca serriola y Amaranthus retroflexus, las cuales son algunas de las principales malezas en los sistemas de producción de hortalizas. Los molidos de semilla de mostaza amarilla, mostaza oriental y colza, se usaron con (intacta) o sin una enzima myrosinasa funcional (desnaturalizada). Las semillas molidas de mostaza amarilla intactas aplicadas a una dosis de 2000 kg ha−1, redujeron significativamente la emergencia de las plántulas de las malezas y su biomasa seca, comparada con los tratamientos de semilla molida intacta de colza. La mostaza oriental mostró significativamente mayor eficacia como herbicida de gramíneas que la mostaza amarilla, que fue más efectiva en el control de malezas de hoja ancha. En todas las instancias, una dosis de aplicación de mostaza oriental o de mostaza amarilla de 1000 kg ha−1, mostró mejores efectos herbicidas en relación a una dosis de aplicación de 2000 kg ha−1 de semilla molida de colza. Estos resultados demuestran que no todos los glucosinolates son iguales en sus efectos como herbicida. El efecto herbicida de la semilla molida de mostaza podría ofrecer a los productores de hortalizas una nueva opción para el control de malezas, particularmente en los sistemas orgánicos de producción. En la práctica, parecería factible tratar suelos con una mezcla de semillas molidas de mostaza oriental y amarilla para poder controlar con efectividad tanto malezas gramíneas como las de hoja ancha.

Weed Management—Techniques
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Literature Cited

Bárberi, P. 2002. Weed management in organic agriculture: are we addressing the right issues? Weed Res. 42:177193.Google Scholar
Borek, V. and Morra, M. J. 2005. Ionic thiocyanate production from 4-hydroxybenzyl glucosinolate contained in Sinapis alba seed meal. J. Agri. Food Chem 53:86508654.Google Scholar
Boyston, R. and Anderson, T. 2008. Mustard (Sinapis alba) Seed Meal Suppresses Weeds in Container-grown Ornamentals. HortScience 43:589968.Google Scholar
Brown, J., Davis, J. B., Erickson, D. A., Brown, A. P., and Seip, L. 1998. Registration of ‘IdaGold’ yellow mustard. Crop Sci 38:541.Google Scholar
Brown, J., Davis, J. B., Brown, D. A., Seip, L., and Gosselin, T. 2004. Registration of ‘Pacific Gold’ oriental condiment mustard. Crop Sci 44:22712272.Google Scholar
Brown, J., Wysocki, D., Davis, J. B., Erickson, D. A., Seip, L., Ott, S., and Gosselin, T. 2004. Registration of ‘Athena’ winter rapeseed. Crop Sci 45:800801.Google Scholar
Brown, P. D. and Morra, M. J. 1995. Glucosinolate-containing plant tissues as bioherbicides. J. Agric. Food Chem. 43:30703074.Google Scholar
Charron, C. S. and Sams, C. E. 1999. Inhibition of Pythium ultimum and Rhizoctonia solani by shredded leaves of Brassica species. J. Am. Soc. Hortic. Sci 124:462467.Google Scholar
Chew, F. S. 1988. Biological effects of glucosinolates. Pages 155181. In Cutler, H. G. ed. Biologically Active Natural Products: Potential Use in Agriculture. Washington, DC American Chemical Society.Google Scholar
Cohen, M. F., Yamasaki, H., and Mazzola, M. 2005. Brassica napus seed meal soil amendment modifies microbial community structure, nitric oxide production and incidence of Rhizoctonia root rot. Soil Biol. Biochem. 37:12151227.Google Scholar
Daun, J. K., DeClercq, D. R., and McGregor, D. I. 1989. Glucosinolate Analysis in B. napus and Rapeseed: Method of the Canadian Grain Commission Grain Research Laboratory. Winnipeg, Canada Agriculture Canada, Canadian Grain Commission.Google Scholar
Daun, J. K. and McGregor, D. I. 1989. Glucosinolate in seeds and residues. Pages 185225. In Rossell, J. B. and Pritchard, J. L. R. eds. Analysis of Oilseeds, Fats and Fatty Foods. New York Elsevier.Google Scholar
Gil, V. and MacLeod, A. J. 1980. Studies on glucosinolate degradation in Lepidium sativum seed extracts. Phytochemistry 19:13691374.Google Scholar
Grunwald, N. J., Hu, S., and van Bruggen, A. H. 2000. Short-term cover crop decomposition in organic and conventional soils: characterization of soil C, N, microbial and plant pathogen dynamics. Eur. J. Plant Pathol 106:3750.Google Scholar
Hamilton, M. 2004. Herbicidal and crop phytotoxicity potential of Brassica napus, Brassica juncea and Sinapis alba seed meal amended soils. . Moscow, ID University of Idaho. 15 p.Google Scholar
Hansson, D., Morra, M. J., Borek, V., Snyder, A. J., Johnson-Maynard, J. L., and Thill, D. C. 2008. Ionic thiocyanate production, fate, and phytotoxicity in soil amended with Brassicaceae seed meals. J. Agric. Food Chem. 56:39123917.Google Scholar
Haramoto, E. R. and Gallandt, E. R. 2004. Brassica cover cropping for weed management: a review. Renew Agric. Food Syst 19:187198.Google Scholar
Hoagland, L., Carpenter-Boggs, L., Reganold, J. P., and Mazzola, M. 2008. Role of native soil biology in Brassicaceous seed meal-induced weed suppression. Soil Biol. Biochem. 40:16891697.Google Scholar
Kawakishi, S., Nasu, S., Cheng, R. Z., and Osawa, T. 1996. Glucosone as a Radical-Generating Intermediate in the Advanced Maillard Reaction. Pages 7784. In Lee, T. C. and Kim, H. J. eds. Chemical Markers for Processed and Stored Foods. Washington DC American Chemical Society.Google Scholar
Larsen, P. O. 1981. Glucosinolates. Pages 501525. In Conn, E. E. ed. The Biochemistry of Plants, Vol. 7: Secondary Plant Products. New York Academic.Google Scholar
MacLeod, A. J. and Rossiter, J. T. 1986. Isolation and examination of thioglucoside glucohydrolase from seeds of Brassica napus . Phytochemistry 25:10471051.Google Scholar
Manici, L. M., Caputo, F., and Babini, V. 2004. Effect of green manure of Pythium spp. population and microbial communities in intensive cropping systems. Plant Soil 263:133142.Google Scholar
Norsworthy, J. K. and Meehan, J. T. IV. 2005a. Herbicidal activity of eight isothiocyanates on Texas panicum (Panicum texanum), large crabgrass (Digitaria sanguinalis), and sickle pod (Senna obtusifolia). Weed Sci. 53:515520.Google Scholar
Norsworthy, J. K. and Meehan, J. T. IV. 2005b. Use of isothiocyanates for suppression of Palmer amaranth (Amaranthus palmeri), pitted morning glory (Ipomoea lacunosa), and yellow nut sedge (Cyperus esculentus). Weed Sci. 53:884890.Google Scholar
Petersen, J., Belz, R., Walker, F., and Hurle, K. 2001. Weed suppression by release of isothiocyanates from turnip-rape mulch. Agron. J. 93:3743.Google Scholar
Rice, A. R., Johnson-Maynard, J. L., Thill, D. C., and Morra, M. J. 2007. Vegetable crop emergence and weed control following amendment with different Brassicaceae seed meals. Renew. Agric. Food Sys 22:204212.Google Scholar
Smolinska, U., Knudsen, G. R., Morra, M. J., and Borek, V. 1997. Inhibition of Aphanomyces euteiches f. sp. pisi by volatiles produced by hydrolysis of Brassica napus seed meal. Plant Dis 81:288292.Google Scholar
Teasdale, J. R. and Taylorson, R. B. 1986. Weed seed response to methyl isothiocyanate and metham. Weed Sci. 34:520524.Google Scholar
Underhill, E. W. 1980. Glucosinolates. Pages 493511. In Bell, E. A. and Charwood, B. V. eds. Encyclopedia of Plant Physiology, Vol. 8: Secondary Plant Products. New York Springer-Verlag.Google Scholar
Vaughn, S. F. and Berhow, M. A. 1998. 1-Cyano-2-hydroxy-3-butene, a phytotoxin from crambe (Crambe abyssinica) seedmeal. J. Chem. Ecol 23:21072116.Google Scholar
Vaughn, S. F., Palmquist, D. E., Duval, S. M., and Berhow, M. A. 2006. Herbicidal activity of glucosinolate-containing seed meals. Weed Sci. 54:743748.Google Scholar