Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T05:43:19.061Z Has data issue: false hasContentIssue false

Clopyralid Dose Response for Two Black Medic (Medicago lupulina) Growth Stages

Published online by Cambridge University Press:  20 January 2017

Shaun M. Sharpe*
Affiliation:
Gulf Coast Research and Education Center, Horticultural Sciences Department, University of Florida, Wimauma FL 33598
Nathan S. Boyd
Affiliation:
Gulf Coast Research and Education Center, Horticultural Sciences Department, University of Florida, Wimauma FL 33598
Peter J. Dittmar
Affiliation:
Horticultural Sciences Department, University of Florida, P.O. Box 110690, Gainesville FL 32611
*
Corresponding author's E-mail: sharpes@ufl.edu

Abstract

Black medic is a troublesome weed in commercial strawberry fields in Florida. It emerges during crop establishment from the planting holes punched in plastic mulches that are installed on raised beds. Clopyralid is registered for posttransplant applications at 140 to 280 g ae ha−1 but growers typically report suppression, not control. An outdoor potted experiment was designed to model the black medic dose-response curve and determine the effect of plant size at application on control. Two plant sizes were selected: designated small (0.5- to 1-cm stem length) and large (3- to 6-cm stem length). Dose-response curves were generated using a log-logistic four-parameter model. At 22 d after treatment (DAT), there was a significant interaction between clopyralid rate and black medic growth stage on both epinasty (P = 0.0022) and chlorosis (P = 0.0055). The effective dosage to induce 90% (ED90) epinasty were 249.5 and 398.3 g ha−1 for the small and large growth stages, respectively. The ED90 for chlorosis was 748.2 for the small growth stage, whereas the estimated value for the large was outside the measured range. For necrosis there was no significant effect of growth stage, and the ED90 was 1,856.3 g ha−1. The aboveground dry biomass ED90 for the small growth stage was 197.3 g ha−1, and the estimated ED90 value for the large was not within the measured range. Results indicate that clopyralid adequately controls black medic when applied at maximum label rates when stems were 0.5 to 1 cm long but not when plants were larger. Poor efficacy typically observed in commercial fields is likely due to black medic plant size or lack of herbicide coverage via shielding by strawberry plants.

Medicago lupulina es una maleza problemática en campos comerciales de fresa en Florida. Esta maleza emerge durante el establecimiento del cultivo en los huecos hechos para el cultivo en la cobertura plástica sobre las camas de siembra. Clopyralid esta registrado para aplicaciones postrasplante a 140 a 280 g ae ha−1, pero los productores típicamente reportan supresión y no control de esta maleza. Se diseñó un experimento al aire libre en potes para modelar la curva de respuesta a dosis de M. lupulina, estimar la dosis de clopyralid requerida para alcanzar 90% de control, y determinar el efecto sobre el control del tamaño de planta al momento de la aplicación. Se seleccionaron dos tamaños de planta designados: pequeño (0.5 a 1 cm de longitud del tallo) y grande (3 a 6 cm de longitud del tallo). Las curvas de respuesta a dosis fueron generadas usando un modelo log-logístico de cuatro parámetros. A 22 d después del tratamiento (DAT), hubo una interacción significativa entre la dosis de clopyralid y el estadio de crecimiento de M. lupulina con respecto a epinastia (P = 0.0022) y clorosis (P = 0.0055). La dosis efectiva para inducir 90% (ED90) de epinastia fue 249.5 y 398.3 g ha−1 para los estadios pequeño y grande, respectivamente. La ED90 para clorosis fue 748.2 para el estadio pequeño, mientras que el valor estimado para el grande estuvo fuera del rango estudiado. Para necrosis, no hubo un efecto significativo del estadio de crecimiento, y la ED90 fue 1,856.3 g ha−1. La ED90 para biomasa aérea seca para el estadio pequeño fue 197.3 g ha−1, y el valor estimado de ED90 para el estadio grande no estuvo dentro del rango medido. Los resultados indican que clopyralid controla adecuadamente M. lupulina cuando se aplica a las dosis máximas de la etiqueta a tallos de 0.5 a 1 cm de longitud, pero no cuando las plantas son más grandes. La pobre eficacia típicamente observada en campos comerciales se debe probablemente al tamaño de planta de M lupulina o a una cobertura del herbicida limitada producto de la interferencia de las plantas de fresa.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Steve Fennimore, University of California, Davis.

References

Literature Cited

Anonymous (2010) Stinger® herbicide specimen label. Indianapolis IN: Dow AgroSciences LLC. 9 pGoogle Scholar
Anonymous (2011) Stinger® Supplemental labeling for annual strawberry in Florida. Indianapolis IN: Dow AgroSciences LLC. 2 pGoogle Scholar
Dharmasiri, N, Dharmasiri, S, Estelle, M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435: 441445 Google Scholar
Grimes, JP (2001) Plant Strategies, Vegetation Processes, and Ecosystem Properties. Chichester, West Sussex, UK: Wiley. 417 pGoogle Scholar
Grossmann, K (2010) Auxin herbicides: current status of mechanism and mode of action. Pest Manag Sci 66: 113120 CrossRefGoogle ScholarPubMed
Kepinski, S, Leyser, O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435: 446451 CrossRefGoogle ScholarPubMed
McMurray, GL, Monks, DW, Leidy, RB (1996) Clopyralid use in strawberries (Fragaria × ananassa Duch.) grown on plastic mulch. Weed Sci 44: 350354 CrossRefGoogle Scholar
Mithila, J, Hall, JC (2005) Comparison of ABP1 over-expressing Arabidopsis and under-expressing tobacco with an auxinic herbicide-resistant wild mustard (Brassica kaber) biotype. Plant Sci 169: 2128 CrossRefGoogle Scholar
Pavone, LV, Reader, RJ (1982) The dynamics of seed bank size and seed state on Medicago lupulina . J Ecol 70: 537547 CrossRefGoogle Scholar
Ritz, C, Kniss, AR, Streibig, JC (2015) Research methods in weed science: statistics. Weed Sci 63: 166187 CrossRefGoogle Scholar
Schabenberger, O, Tharp, BE, Kells, JJ, Penner, D (1999) Statistical tests for hormesis and effective dosages in herbicide dose response. Agron J 91: 713721 Google Scholar
Sidhu, SS (1971) Some Aspects of the Ecology of Black Medick (Medicago lupulina L.). Ph.D dissertation. London, Ontario, Canada: University of Western Ontario. 357 pGoogle Scholar
Turkington, R, Cavers, PB (1978) Reproductive strategies and growth patterns of four legumes. Can J Bot 56: 413416 Google Scholar
[USDA] United States Department of Agriculture. 2015. National Agricultural Statistics Service. http://www.nass.usda.gov/Data_and_Statistics/. Accessed June 19, 2015Google Scholar
Walsh, TA, Neal, R, Merlo, AO, Honma, M, Hicks, GR, Wolff, K, Matsumura, W, Davies, JP (2006) Mutations in an auxin receptor homolog AFB5 and in SGT1b confer resistance to synthetic picolinate auxins and not to 2,4-dichlorophenoxyacetic acid or indole-3-acetic acid in Arabidopsis . Plant Physiol 142: 542552 CrossRefGoogle ScholarPubMed
Zhang, S, Zhao, C, Lamb, EG (2011) Cotyledon damage affects seed number through the final plant size in the annual grassland species Medicago lupulina . Ann Bot (Lond) 107: 437442 Google Scholar