Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T18:11:17.528Z Has data issue: false hasContentIssue false

Influence of Seeding System Disturbance on Preplant Incorporated Herbicide Control of Rigid Ryegrass (Lolium rigidum) in Wheat in Southern Australia

Published online by Cambridge University Press:  20 January 2017

Samuel G. L. Kleemann*
Affiliation:
School of Agriculture, Food and Wine, University of Adelaide, PMB1, Waite Campus, Glen Osmond, South Australia 5064, Australia
Christopher Preston
Affiliation:
School of Agriculture, Food and Wine, University of Adelaide, PMB1, Waite Campus, Glen Osmond, South Australia 5064, Australia
Gurjeet S. Gill
Affiliation:
School of Agriculture, Food and Wine, University of Adelaide, PMB1, Waite Campus, Glen Osmond, South Australia 5064, Australia
*
Corresponding author's E-mail: samuel.kleemann@adelaide.edu.au.

Abstract

Field experiments were conducted in 2008, 2011, and 2012 to investigate the interaction between seeding system disturbance and PPI herbicides on rigid ryegrass control in wheat. Of the herbicides examined, prosulfocarb + S-metolachlor, and pyroxasulfone provided ≥ 70% control of rigid ryegrass, irrespective of seeding system. In contrast, trifluralin was the least-effective herbicide against rigid ryegrass and was particularly ineffective when used with single disc (10% control) relative to the triple-disc seeding system (80%) in 2012. Trifluralin consistently reduced wheat density when incorporated using single discs (46 to 59%) but not do so with the triple disc or double-shoot knife-point systems. Although there were large differences in crop establishment because of herbicide phytotoxicity, that did not always translate into large differences in yield because wheat was able to recover from reductions in plant density by increasing the spike number per plant. Pyroxasulfone caused no damage to wheat and appeared to be the most suitable PPI herbicide for use with single-disc seeding systems.

En 2008, 2011 y 2012, se realizaron experimentos de campo para investigar la interacción entre la perturbación causada por el sistema de siembra y el herbicida PPI en el control de Lolium rigidum en trigo. De los herbicidas examinados, prosulfocarb + S-metolachlor, y pyroxasulfone brindaron ≥70% de control de L. rigidum, independientemente del sistema de siembra. En contraste, trifluralin fue el herbicida menos efectivo contra L. rigidum, y fue particularmente inefectivo cuando se usó con el disco sencillo (10% de control) en relación con el sistema de triple-disco (80%) en 2012. Trifluralin redujo consistentemente la densidad del trigo cuando se incorporó usando discos sencillos (46 a 59%), pero esto no ocurrió con el triple-disco o con sistemas de doble cuchilla. Aunque hubo grandes diferencias en el establecimiento del cultivo debido a la fitotoxicidad de los herbicidas, esto no siempre se tradujo en grandes diferencias en rendimiento porque el trigo fue capaz de recuperarse de las reducciones en densidad de plantas al incrementar el número de espigas por planta. Pyroxasulfone no causó daño al trigo y pareció ser el herbicida PPI más adecuado para uso con sistemas de siembra de disco sencillo.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

APVMA [Australian Pesticides and Veterinary Medicines Authority] (2007) Public Release Summary—On the Evaluation of the New Active Prosulfocarb in the Product Boxer Gold Herbicide. http://www.apvma.gov.au. Accessed: March 4, 2013Google Scholar
APVMA [Australian Pesticides and Veterinary Medicines Authority] (2011) Public Release Summary—On the Evaluation of the New Active Pyroxasulfone in the Product Sakura® 850 WG Herbicide. http://www.apvma.gov.au. Accessed: March 4, 2013Google Scholar
Ashworth, M, Desbiolles, JMA, Tola, E (2010) Disc Seeding in Zero-Till Farming Systems—A Review of Technology and Paddock Issues. Northam, Western Australia: Western Australian No-Tillage Farmer's Association Google Scholar
Australian Bureau of Meteorology (2013) Climate Data Online. http://www.bom.gov.au/climate/data/index.shtml. Accessed: March 12, 2013Google Scholar
Boutsalis, P, Gill, GS, Preston, C (2012) Incidence of herbicide resistance in rigid ryegrass (Lolium rigidum) across southeastern Australia. Weed Technol 26:391398 Google Scholar
Broster, JC, Koetz, EA, Wu, H (2011) Herbicide resistance levels in annual ryegrass (Lolium rigidum Gaud.) in southern New South Wales. Plant Prot Q 26:2228 Google Scholar
Chauhan, BS, Gill, GS, Preston, C (2006a) Tillage system effects on weed ecology, herbicide activity and persistence: a review. Aust J Exp Agric 46:15571570 Google Scholar
Chauhan, BS, Gill, GS, Preston, C (2006b) Influence of tillage systems on vertical distribution, seedling emergence and persistence of rigid ryegrass (Lolium rigidum) seed bank. Weed Sci 54:669676 CrossRefGoogle Scholar
Chauhan, BS, Gill, GS, Preston, C (2006c) Tillage systems affect trifluralin bioavailability in soil. Weed Sci 54:941947 Google Scholar
Chauhan, BS, Gill, GS, Preston, C (2007) Effect of seeding systems and dinitroaniline herbicides on emergence and control of rigid ryegrass (Lolium rigidum) in wheat. Weed Technol 21:5358 Google Scholar
Desbiolles, J, Kleemann, S (2003) Seeding system factors influence no-till cropping results. Pages 364372 in Proceedings of the 16th Triennial International Soil Tillage Research Organization ISTRO Conference. Brisbane, Australia University of Queensland Google Scholar
D'Emden, FH, Llewellyn, RS (2004) No-till adoption and cropping issues for Australian grain growers. Page 108 in Fischer, T, ed. 4th International Crop Science Conference. Brisbane, Australia The Regional Institute Google Scholar
D'Emden, FH, Llewellyn, RS, Burton, MP (2008) Factors influencing the adoption of conservation tillage in Australian cropping regions. Aust J Agric Res Econ 52:169182 Google Scholar
Gallagher, RS, Steadman, KJ, Crawford, AD (2004) Alleviation of dormancy in annual ryegrass (Lolium rigidum) seeds by hydration and after-ripening. Weed Sci 52:968975 Google Scholar
Gill, GS (1996) Why annual ryegrass is a problem in Australian Agriculture. Plant Prot Q 11:193195 Google Scholar
Grover, R, Wolt, JD, Cessna, AJ, Schiefer, HB (1997) Environmental fate of trifluralin. Rev Environ Contam Toxicol 153:116 Google Scholar
Kenaga, EE (1980) Predicted bioconcentration factors and soil sorption coefficients of pesticides and other chemicals. Ecotoxicol Environ Saf 4:2638 Google Scholar
Leys, AR, Plater, B, Cullis, B (1988) Response of six temperate annual grasses to six selective herbicides. Plant Prot Q 3:163168 Google Scholar
Mueller, TC, Steckel, LE (2011) Efficacy and dissipation of pyroxasulfone and three chloroacetamides in a Tennessee field soil. Weed Sci 59:574579 Google Scholar
Poole, ML, Gill, GS (1987) Competition between crops and weeds in southern Australia. Plant Prot Q 2:8689 Google Scholar
Powles, SB, Bowran, DG (2000) Crop weed management systems. Pages 287306 in Sindel, BM, ed. Australian Weed Management Systems. Meredith, VIC, Australia: RG & FJ Richardson Google Scholar
Rerkasem, K, Stern, WR, Goodchild, NA (1980) Associated growth of wheat and annual ryegrass, 1: effect of varying total density and proportion in mixtures of wheat and annual ryegrass. Aust J Agric Res 31:549658 Google Scholar
Savage, K, Barrentine, W (1969) Trifluralin persistence as affected by depth of soil incorporation. Weed Sci 17:349352 Google Scholar
Smith, DF, Levick, GRT (1974) The effect of infestation by Lolium rigidum Gaud. (annual ryegrass) on the yield of wheat. Aust J Agric Res 25:381393 Google Scholar
Walsh, MJ, Fowler, TM, Crowe, B, Ambe, T, Powles, SB (2011) The potential for pyroxasulfone to selectively control resistant and susceptible rigid ryegrass (Lolium rigidum) biotypes in Australian grain crop production systems. Weed Technol 25:3037 Google Scholar
Zadoks, JC, Chang, TT, Konzak, CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415421 Google Scholar