Skip to main content

Injury Criteria Associated with Soybean Exposure to Dicamba

  • Matthew R. Foster (a1) and James L. Griffin (a2)
  • Please note a correction has been issued for this article.

Research conducted in the field identified 14 injury criteria associated with dicamba (Clarity® diglycolamine salt) applied at 0.6 to 280 g ae ha–1 (1/1,000 to 1/2 of 560 g ha–1 use rate) to indeterminate soybean at V3/V4 or R1/R2. For each criterion, injury was rated using a scale of 0=no injury, 1=slight, 2=slight to moderate, 3=moderate, 4=moderate to severe, and 5=severe. Greatest crop injury 15 d after treatment (DAT) was observed for dicamba rates of 0.6 to 4.4 g ha–1 for upper canopy pale leaf margins (3.8 to 4.2) at V3/V4 and for terminal leaf cupping (4.1 to 5.0) at R1/R2, and for rates of 0.6 to 8.8 g ha–1 for upper canopy leaf cupping (3.8 to 4.8) and upper canopy leaf surface crinkling (3.4 to 4.4) at V3/V4. Injury 15 DAT was equivalent to the nontreated control for dicamba rates as high as 4.4 g ha–1 for lower stem base swelling at V3/V4 and for upper canopy leaf rollover/inversion and terminal leaf necrosis at R1/R2; for rates as high as 8.8 g ha–1 for leaf petiole base swelling and stem epinasty at R1/R2, and lower stem base lesions/cracking (V3/V4 and R1/R2 average); and for rates as high as 17.5 g ha–1 for lower leaf soil contact at V3/V4 and leaf petiole droop at R1/R2. The response to increasing dicamba rate observed for the injury criteria was in contrast to the steady increase in visual injury and plant height reduction rated as 0 to 100%. The moderate to severe upper canopy leaf cupping, pale leaf margins, and leaf surface crinkling, and terminal leaf cupping 15 DAT with dicamba at 0.6 to 4.4 g ha–1 corresponded to soybean yield loss of 1% to 9% for application at V3/V4 and 2% to 17% at R1/R2.

Corresponding author
Author for correspondence: James L. Griffin, LSU School of Plant, Environmental, and Soil Sciences, 104 M. B. Sturgis Hall, Baton Rouge, LA 70803. (Email:
Hide All
Al-Khatib, K, Peterson, D (1999) Soybean (Glycine max) response to simulated drift from selected sulfonylurea herbicides, dicamba, glyphosate, and glufosinate. Weed Technol 13:264270
Andersen, SM, Clay, SA, Wrage, LJ, Matthees, D (2004) Soybean foliage residues of dicamba and 2,4-D and correlation to application rates and yield. Agron J 96:750760
Anonymous (2017) LSU AgCenter Pest Management Guides. Accessed: December 10, 2017
Auch, DE, Arnold, WE (1978) Dicamba use and injury on soybeans (Glycine max) in South Dakota. Weed Sci 26:471475
Bauerle, MJ, Griffin, JL, Alford, JL, Curry, AB III, Kenty, MM (2015) Field evaluation of auxin herbicide volatility using cotton and tomato as bioassay crops. Weed Technol 29:185197
Behrens, MR, Mutlu, N, Chakraborty, S, Dumitru, R, Jiang, WZ, LaVallee, BJ, Herman, PL, Clemente, TE, Weeks, DP (2007) Dicamba resistance: enlarging and preserving biotechnology-based weed management strategies. Science 316:11851188
Bradley, K (2017) A final report on dicamba-injured soybean acres. Integrated Pest and Crop Manage. Newsletter 27(10). 2 p
Brown, RB, Carter, MH, Stephenson, GR (2004) Buffer zone and windbreak effects on spray drift deposition in a simulated wetland. Pest Manag Sci 60:10851090
Carlsen, SCK, Spliid, NH, Svensmark, B (2006) Drift of 10 herbicides after tractor spray application. 2. Primary drift (droplet drift). Chemosphere 64:778786
Carmer, SG, Nyquist, WE, Walker, WM (1989) Least significant differences for combined analyses of experiments with two- and three- factor treatment designs. Agron J 81:665672
de Jong, FMW, de Snoo, GR, van de Zande, JC (2008) Estimated nationwide effects of pesticide spray drift on terrestrial habitats in the Netherlands. J Environ Manage 86:721730
Egan, JF, Mortensen, DA (2012) Quantifying vapor drift of dicamba herbicides applied to soybean. Environ Toxicol Chem 31:10231031
Egan, JF, Barlow, KM, Mortensen, DA (2014) A meta-analysis on the effects of 2,4-D and dicamba drift on soybean and cotton. Weed Sci 62:193206
Fehr, WR, Caviness, CE (1977) Stages of soybean development. Special Report 80, Iowa Agriculture and Home Economics Experiment Station, Iowa State University. 11 p
Griffin, JL, Bauerle, MJ, Stephenson, DO IV, Miller, DK, Boudreaux, JM (2013) Soybean response to dicamba applied at vegetative and reproductive growth stages. Weed Technol 27:696703
Grover, R, Yoshida, K, Maybank, J (1972) Droplet and vapor drift from butyl ester and dimethylamine salt of 2,4-D. Weed Sci 20:320324
Heap, I (2017) The International Survey of Herbicide Resistant Weeds. Accessed: August 8, 2017
Johnson, VA, Fisher, LR, Jordan, DL, Edmisten, KE, Stewart, AM, York, AC (2012) Cotton, peanut, and soybean response to sublethal rates of dicamba, glufosinate, and 2,4-D. Weed Technol 26:195206
Nandula, VK, Poston, DH, Reddy, KN, Whiting, K (2009) Response of soybean to halosulfuron herbicide. Int J Agron, vol. 2009, Article ID 754510, 7 p https//
Robinson, AP, Simpson, DM, Johnson, WG (2013) Response of glyphosate-tolerant soybean yield components to dicamba exposure. Weed Sci 61:526536
[US EPA] United States Environmental Protection Agency (2006) Reregistration Eligibility Decision for Dicamba and Associated Salts. Washington, DC: US EPA. 165 p
[US EPA] United States Environmental Protection Agency (2017) Compliance Advisory: High Number of Complaints Related to Alleged Misuse of Dicamba Raises Concerns. Accessed: August 8, 2017
Wang, M, Rautman, D (2008) A simple probabilistic estimation of spray drift-factors determining spray drift and development of a model. Environ Toxicol Chem 27:26172626
Wax, LM, Knuth, LA, Slife, FW (1969) Response of soybeans to 2,4-D, dicamba, and picloram. Weed Sci 17:388393
Weidenhamer, JD, Triplett, GB, Sobotka, FE (1989) Dicamba injury to soybean. Agron J 81:637643
White, SN, Boyd, NS (2016) Effect of dry heat, direct flame, and straw burning on seed germination of weed species found in lowbush blueberry fields. Weed Technol 30:263270
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Weed Technology
  • ISSN: 0890-037X
  • EISSN: 1550-2740
  • URL: /core/journals/weed-technology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: