Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T23:01:59.169Z Has data issue: false hasContentIssue false

Response of Chickpea Cultivars to Imidazolinone Herbicide Applied at Different Growth Stages

Published online by Cambridge University Press:  20 January 2017

Abstract

POST broadleaf weed control options in chickpea are very limited on the Northern Great Plains. Field experiments were conducted in 2012 and 2013 in Saskatchewan to evaluate the response of chickpea cultivars to imidazolinone (IMI) herbicides applied at different growth stages. Conventional cultivars ‘CDC Luna’ and ‘CDC Corinne’ were compared with IMI-resistant cultivars ‘CDC Alma’ and ‘CDC Cory’. Treatments comprised a combination of imazethapyr + imazamox herbicides at 30 and 60 g ai ha−1 (1× and 2× rates, respectively) applied at the 2 to 4-, 5 to 8-, and 9 to 12-node growth stages. Visual injury estimates were > 50% for CDC Luna and CDC Corinne for all growth stage applications. Conventional cultivars also experienced height reduction and decreased rate of node development compared with the nontreated controls. Flowering and maturity of CDC Luna and CDC Corinne were delayed for herbicide applications at all growth stages; however, application at the 9 to 12-node stage caused the most severe delay. All treatments of IMI herbicide caused yield reduction in the conventional cultivars in 2013. In contrast, IMI-resistant cultivars CDC Alma and CDC Cory demonstrated no negative response at any growth stage of IMI herbicide application. Visual injury estimates were negligible, and height, node development, days to flowering, maturity, and yield did not differ significantly between IMI-treated plants and the respective controls. These results demonstrated the potential of in-crop use of IMI herbicide on resistant chickpea cultivars to control broadleaf weeds.

En las Grandes Planicies del Norte, las opciones de control POST de malezas de hoja ancha en garbanzo son limitadas. En 2012 y 2013, se realizaron experimentos de campo en Saskatchewan para evaluar la respuesta de cultivares de garbanzo a herbicidas imidazolinone (IMI) aplicados en diferentes estadios de crecimiento. Los cultivares convencionales ‘CDC Luna’ y ‘CDC Corinne’ fueron comparados con los cultivares resistentes a IMI ‘CDC Alma’ y ‘CDC Cory’. Los tratamientos fueron una combinación de los herbicidas imazethapyr + imazamox a 30 y 60 g ai ha−1 (dosis 1× y 2×, respectivamente), aplicados en los estadios de crecimiento de 2 a 4, 5 a 8, y 9 a 12 nudos. Estimaciones visuales de daño fueron >50% para CDC Luna y CDC Corinne en todas las aplicaciones según el estadio de crecimiento. Los cultivares convencionales también experimentaron reducciones en la altura y disminuyeron la tasa de desarrollo de nudos al compararse con los testigos sin tratamiento. La floración y la madurez de CDC Luna y CDC Corinne fueron retrasadas con las aplicaciones de herbicidas en todos los estadios de crecimiento. Sin embargo, la aplicación en el estadio de 9 a 12 nudos causó el retraso más severo. Todos los tratamientos de herbicidas IMI causaron reducciones en el rendimiento de los cultivares convencionales en 2013. En contraste, los cultivares resistentes a IMI CDC Alma y CDC Cory no mostraron respuestas negativas con ninguna de las aplicaciones de herbicidas IMI independientemente de los estadios de crecimiento. Las estimaciones visuales de daño fueron insignificantes, y la altura, el desarrollo de nudos, los días a floración, madurez, y el rendimiento no fueron significativamente diferentes entre las plantas tratadas con IMI y sus respectivos controles. Estos resultados demostraron el potencial del uso de herbicidas IMI dentro del cultivo en cultivares de garbanzo resistentes para el control de malezas de hoja ancha.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Darren Robinson, University of Guelph.

References

Literature Cited

Al-Thahabi, SA, Yasin, IZ, Abu-Irmaileh, BE, Haddad, NI, Saxena, MC (1994) Effect of weed removal on productivity of chickpea (Cicer arietinum L) and lentil (Lens culinaris Med) in a Mediterranean environment. J Agron Crop Sci 172: 333341 CrossRefGoogle Scholar
Anbessa, Y, Warkentin, T, Bueckert, R, Vandenberg, A, Gan, Y (2007) Post-flowering dry matter accumulation and partitioning and timing of crop maturity in chickpea in western Canada. Can J Plant Sci 87: 233240 Google Scholar
Bosnic, AC, Swanton, CJ (1997) Influence of barnyardgrass (Echinochloa crus-galli) time of emergence and density on corn (Zea mays). Weed Sci 45: 276282 Google Scholar
Bueckert, RA, Clarke, JM (2013) Review: annual crop adaptation to abiotic stress on the Canadian prairies: six case studies. Can J Plant Sci 93: 375385 CrossRefGoogle Scholar
Dawson, JH (1986) The concept of period thresholds. Pages 327331 in Proceedings of the European Weed Research Society Symposium: Economic Weed Control. Stuttgart, Germany: European Weed Research Society Google Scholar
Frans, R, Talbert, R, Marx, D, Crowley, H (1986) Experimental design and techniques for measuring and analyzing plant responses to weed control practices. Pages 2946 in Camper, ND, ed. Research Methods in Weed Science. 3rd edn. Champaign, IL: Southern Weed Science Society Google Scholar
Frenda, AS, Ruisi, P, Saia, S, Frangipane, B, Di Miceli, G, Amato, G, Giambalvo, D (2013) The critical period of weed control in faba bean and chickpea in Mediterranean areas. Weed Sci 61: 452459 CrossRefGoogle Scholar
Government of Canada (2014) Historical climate data. http://climate.weather.gc.ca/index_e.html. Accessed October 20, 2014Google Scholar
Hanson, BD, Frandrich, L, Shaner, DL, Westra, P, Nissen, SJ (2007) Recovery of imidazolinone-resistant hard red wheat lines following imazamox application. Crop Sci 47: 20582066 Google Scholar
Jefferies, L (2014) Responses of Selected Chickpea Cultivars to Imidazolinone Herbicide. M.Sc. thesis. Saskatchewan, Canada: University of Saskatchewan. 102 pGoogle Scholar
Knezevic, SZ, Evans, SP, Blankenship, EE, Van Acker, RC, Lindquist, JL (2002) Critical period for weed control: the concept and data analysis. Weed Sci 50: 773786 Google Scholar
Knott, CM, Halila, HM (1986) Weeds in food legumes: problems, effects, control. Pages 535548 in Summerfield, RJ, eds. World Crops: Cool Season Food Legumes. Dorddrecht, The Netherlands: Kluwer Academic Google Scholar
McVicar, R, Pearse, P, Panchuk, K, Brenzil, C, Hartley, S, Yasinowski, J (2007) Chickpea. Retrieved from Government of Saskatchewan: https://www.saskatchewan.ca/business/agriculture-natural-resources-and-industry/agribusiness-farmers-and-ranchers/crops-and-irrigation/pulse-crop-bean-chickpea-faba-bean-lentils/chickpea. Accessed March 30, 2016Google Scholar
Mohammadi, G, Javanshir, A, Khooie, FR, Mohammadi, SA, Zehtab, S (2005) Critical period of weed interference in chickpea. Weed Res 45: 5763 CrossRefGoogle Scholar
O'Donovan, JT, Remy, EA, O'sullivan, PA, Dew, DA, Sharma, AK (1985) Influence of the relative time of emergence of wild oat (Avena fatua) on yield loss of barley (Hordeum vulgare) and wheat (Triticum aestivum). Weed Sci 33: 498503 CrossRefGoogle Scholar
Paolini, R, Faustini, F, Saccardo, F, Crinò, P (2006) Competitive interactions between chickpea genotypes and weeds. Weed Res 46: 335344 Google Scholar
Prather, TS, Ditomaso, JM, Holt, JS (2000) Herbicide Resistance: Definition and Management Strategies. Oakland, CA: University of California Division of Agriculture and Natural Sciences Publ. 8012. 14 pGoogle Scholar
Redden, RJ, Berger, JD (2007) History and origin of chickpea. Pages 113 in Yadav, SS, Redden, RJ, Chen, W, Sharma, B, eds. Chickpea Breeding and Management. Cambridge, MA: CAB International Google Scholar
Shaner, DL, Anderson, PC, Stidham, MA (1984) Imidazolinones. Plant Physiol 76: 545546 Google Scholar
Solh, MB, Pala, M (1990) Weed control in chickpeas. Pages 9399 in Proceedings of the Seminar on Present Status and Future Prospects of Chickpea Crop Production and Improvement in the Mediterranean Countries. Options Mediterraneennes, Serie A, Seminaries Mediterraneens, no. 9. Paris, France: [CIHEAM] Centre International de Hautes Etudes Agronomiques MéditerranéennesGoogle Scholar
Tan, S, Evans, RR, Dahmer, ML, Singh, BK, Shaner, DL (2005) Imidazolinone tolerant crops: history, current status and future. Pest Manag Sci 61: 246257 Google Scholar
Tar'an, B, Warkentin, TD, Vandenberg, A, Holm, FA (2010) Variation in chickpea germplasm for tolerance to imazethapyr and imazamox herbicides. Can J Plant Sci 90: 139142 Google Scholar
Tecle, B, Da Cunha, A, Shaner, DL (1993) Differential routes of metabolism of imidazolinones: basis for soybean (Glycine max) selectivity. Pestic Biochem Phys 46: 120130 Google Scholar
Thompson, C, Tar'an, B (2014) Genetic characterization of the acetohydroxyacid synthase (AHAS) gene responsible for resistance to imidazolinone in chickpea (Cicer arietinum L). Theor Appl Genet 127: 15831591 CrossRefGoogle ScholarPubMed
Whish, JP, Sindel, BM, Jessop, RS (2002) The effect of row spacing an weed density on yield loss of chickpea. Aust J Agric Res 53: 13351340 Google Scholar
Zhou, Q, Liu, W, Zhang, Y, Liu, KK (2007) Action mechanisms of acetolactate synthase-inhibiting herbicides. Pestic Biochem Phys 89: 8996 Google Scholar