Hostname: page-component-594f858ff7-c4bbg Total loading time: 0 Render date: 2023-06-08T01:40:09.369Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "corePageComponentUseShareaholicInsteadOfAddThis": true, "coreDisableSocialShare": false, "useRatesEcommerce": true } hasContentIssue false

Role of Acid-Base Balance in the Physiology of Egg Shell Formation

Published online by Cambridge University Press:  18 September 2007

P. Mongin
Station de Recherches AvicolesInstitut National de la Recherche Agronomique 78 Jouy-en-Josas, France
Get access


Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Research Article
Copyright © Cambridge University Press 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Anderson, R. S. (1967). Acid-base changes in the excreta of the laying hens. Vet. Rec. 80, 314315.Google Scholar
Ardaillou, R., Amiel, C., Lecestre, M., et Richet, G. (1963). Acidification de l'urine apres injection intraveineuse de sels de calcium chez l'homme. a. II. Effects comparés du gluconate et du ChloNre de calcium. Revue fr. Etud. clin. Biol. 8, 541552.Google Scholar
Ardaillou, R., Amiel, C., Lecestre, M., et Richet, G. (1963). Acidification de l'urine apres injection intraveineuse de sels de calcium chez l'homme.b. IV. Effects oppoés de l'acétazolamide et du gluconate de calcium. Revue fr. Etud. clin. biol. 8, 681687.Google Scholar
Bachra, B. N., Trautz, O. R., and Simon, S. L., (1963). Precipitation of calcium carbonates and phosphates. 1. Spontaneous precipitation of calcium carbonates and phosphates under physiological conditions. Archs. Biochem. Biophys. 103, 124128.CrossRefGoogle Scholar
Bank, N. and Schwartz, W. B., (1960). The influence of anion penetration ability on urinary acidification and the excretion of titratable acidity. J. clin. Invest. 39, 15161525.CrossRefGoogle Scholar
Beadle, B. W., Conrad, R. M., and Scott, H. M., (1938). Composition of uterine secretion of the domestic fowl. Poult. Sci. 17, 498504.CrossRefGoogle Scholar
Bernstein, D., Wachman, A. and Guri, C. (1967). Bone as a buffer: the role of inorganic phosphate as a hydrogen ion accepter. J. clin. Invest. 46, 10361037.Google Scholar
Brown, W. O., and Badman, H. G., (1962). The respiration rate and alkaline phosphatase activity of the regions of the avian oviduct. Poult. Sci. 41, 654657.CrossRefGoogle Scholar
Calder, W. A. and Schmidt-Nielsen, K. (1966). Evaporative cooling and respiratory alcalosis in the Pigeon. Proc. natn. Acad. Sci. U.S.A. 55, 750756.CrossRefGoogle Scholar
Common, R. H. (1941). Carbonic anhydrase in various organs of the hen. J. agric. Sci. 31, 412414.CrossRefGoogle Scholar
Common, R. H. (1941). Observations of the mineral metabolism of pullets. V. Acid-base equilibrium and reproductive activity. J. agric. Sci. 31, 281294.CrossRefGoogle Scholar
Cuisinier-Gleizes, P., Mathieu, H. et Royer, P. (1967). Effet d'une surcharge acids sur l'equilibre phosphocalcique du rat parathyrodiectomizé et du rat normal. Revue fr. Etud. clin. biol. 12, 566573.Google Scholar
Davenport, H. W. (1962). The A.B.C. of acid-base chemistry. The University of Chicago Press.Google Scholar
Diamantstein, T. (1966). Uber die lokale Rolle der Carboanhydratase in Hinblick auf der Eischalenwerkalkung. Arch. Geflugelk. 30, 309320.Google Scholar
Diamanstein, T. and Schluns, J. (1964). Lokalistation und Bedeutung der Karboanhydrase in Uterus von Legehennen. Acta histochem. 19, 296302.Google Scholar
Draper, M. H. (1966). The transport of minerals to the white of the hen's egg. Proc. XIIIth World Poult. Congr. Kiev, 333336.Google Scholar
El-Boushy, A. R. (1966). Egg shell quality and microstructure as affected by vitamin C, other feed additives, and high environmental temperatures. Meded. LandbHoogesch. Wageningen, 6667.Google Scholar
El-Jack, M. H., and Lake, P. L., (1967). The content of the principal inorganic ions and corbon dioxide in uterien fluids of the domestic fowl. J. Reprod. Fert. 13, 127132.CrossRefGoogle Scholar
Frank, F. R., and Burger, R. E. (1965). The effect of carbon dioxide inhalation and sodium bicarbonate ingestion on egg shell deposition. Poult. Sci. 44, 16041606.CrossRefGoogle Scholar
Fujita, T., Orimo, H., Yoshikawa, M., Morri, H., and Naka, O. K., (1965). Effect of acidosis and alcalosis on recovery from hypocalcemia. Endocrinology 76, 12021204.CrossRefGoogle Scholar
Gutowska, M. S. and Mitchell, C. A., (1945). Carbonic anhydrase in the calcification of the egg shell. Poult. Sci. 24, 159168.CrossRefGoogle Scholar
Hall, K. N. and Helbacka, N. V. (1959). Improving albumen quality. Poult. Sci. 38, 111114.CrossRefGoogle Scholar
Helbacka, N. V., Casterline, J. L., and Smith, C.V. (1963). The effect of high CO2 atmosphere on the laying hen. Poult. Sci. 42, 10821084.CrossRefGoogle Scholar
Helbacka, N. V., Casterline, J. L., Smith, C. J., and Shaffner, C. S., (1964). Investigation of plasma carbonic acid PK1 of the chicken. Poult. Sci. 43, 138144.CrossRefGoogle Scholar
Hodges, R. D. (1965). The blood supply to the avian oviduct, with special reference to the shell gland. J. Anat. 99, 485506.Google ScholarPubMed
Hodges, R. D. (1966). The functional anatomy of the avian shell gland. In Horton-Smith C. and Amoroso E. C. Physiology of the domestic fowl, 191198, Oliver and Boyd Ltd.Google Scholar
Hodges, R. D. (1966). Changes in blood pO2 and pH during the formation of egg shell in laying hens. Proc. XIIIth World Poult. Congr. Kiev, 314319.Google Scholar
Howes, J. R. (1967). Acid-base relationships and calcium deposition in the egg shell. Distillers Feed Res. Counc. 22, 3239.Google Scholar
Hunt, J. R. and Aitken, J. R. (1962). Studies on the influence of ascorbic acid on shell quality. Poult. Sci. 41, 219256.CrossRefGoogle Scholar
Hunt, J. R. and Aitken, J. R. (1962). The effect of ammonium and chloride ions in the diet of hens on shell quality. Poult. Sci. 41, 434438.CrossRefGoogle Scholar
Itoh, H. and Hatano, T. (1964). Variation of magnesium and phosphorus deposition rates during egg shell formation. Poult. Sci. 43, 7780.CrossRefGoogle Scholar
Keiken, D. and Mann, T. (1940). Sulphanilamide as a specific inhibitor of carbonic anhydrase. Nature, Lond. 146, 164165.Google Scholar
Loken, H. F., Havel, R. J., Garden, G. S., and Whittington, S. L. (1960). Ultracentrifugal analysis of protein-bound and free calcium in human serum. J. biol. Chem. 235, 36543658.Google ScholarPubMed
McIntyre, T. M. and Aitken, J. R. (1959). The protein requirements of laying hens in floor pens and individual cages. Canda. J. anim. Sci. 39, 176181.CrossRefGoogle Scholar
Maren, T. H. (1963a). Carbonic anhydrase kinetics and inhibition at 37: An approach to reaction rates in vivo. J. Pharmacol. 139, 129139.Google ScholarPubMed
Maren, T. H. (1963b). The relation between enzyme inhibition and physiological response in the carbonic anhydrase system. J. Pharmacol. 139, 140153.Google ScholarPubMed
Milroy, T. H. (1904). The formation of uric acid in birds. J. Physiol. 30, 4760.CrossRefGoogle Scholar
Misra, M. S. and Kemeny, A. (1964). Studies on the oviduct and serum of fowls. II. Oxygen uptake by the regions of the oviduct and effect of calcium ion on it, the concentration of inorganic phosphrous, calcium and magnesium and the level of alkaline phosphatase activity in serum of Hungarian yellow. Acta. Vet. hung. 14, 443454.Google Scholar
Mongin, P. (1967). Elevage de pondeuses sous atmosphère enrichie en gaz carbonique. lbre partie: Action sur la ponte et la qualite de la coquille. (to be published).Google Scholar
Mongin, P. (1967). Action du diamox sur l'équilibre acido-basique du sand de la poule (in press).Google Scholar
Mongin, P. and Lacassagne, L. (1964). Physiologie de la formation de la coquille de l'oeug et équilibre acido-basique. C. R. Acad. Sci. 258, 30933094.Google Scholar
Mongin, P. and Lacassagne, L. (1965). Etat actuel de nos connaissances sur las formation de la coquille de l'oeuf. Bull. Soc. Hyg. aliment. et AFTAA et AFZ. 53, 117126.Google Scholar
Mongin, P. and Lacassagne, L. (1965). Physiologie de la formation de la coquille de l'oeuf et ventilation pulmonaire. C. R. Acad. Sci. 261, 42284230.Google Scholar
Mongin, P. and Lacassagne, L. (1966). Equilibre acido-basique du sang et physiologie de la formation de la coquille de l'oeuf. Annals. Biol. anim. Biochin. Biophys. 6, 93100.CrossRefGoogle Scholar
Mongin, P. and Laccassagne, L. (1966). Rythme respiratoire et physiologie de la conquille de l'oeuf. Annals. Biol. anim. Biochin. Biophys. 6, 110;111.Google Scholar
Mongin, P. and Lacassange, L. (1967a). Excrbtion urinaire chez la poule au moment de la ponte de son premier oeuf. C. R. Acad. Sci. 264, 24792480.Google Scholar
Mongin, P. and Lacassagne, L. (1967b). Excdtion urinaire chez la poule au moment du reveil. Les modifications dues a la calcification de l'oeuf. (in press).Google Scholar
Mueller, W. J. (1962). Carbonic anhydrase, diuretics and egg shell formation. Poult. Sci. 41, 17921796.CrossRefGoogle Scholar
Mueller, W. J. (1966). Effect of rapid temperature changes on acid-base balance in shell quality (abstr.). Poult. Sci. 45, 1109.Google Scholar
Ogasawara, F. X., Van Krey, H. P., and Lorenz, F. W. (1964). Hydrogen ion concentration of the oviduct of the laying domestic fowl. Poult. Sci. 43, 36.CrossRefGoogle Scholar
Opel, H. (1965). Failure of neurohypophysectomy to reduce egg shell thickness in chickens. Poult. Sci. 44, 11351136.CrossRefGoogle ScholarPubMed
Pitts, R. F. and Alexander, R. S. (1945). The nature of the renal mechanism for acidifying the urine. Am. J. Physiol. 144, 239.Google Scholar
Polli, E., Sala, G. and Amico, G. (1961). VII kme Congr. Internat. Thébrapeutique Genéeve 6–8 Oct., 391.Google Scholar
Relman, A. S., Porter, R., Tobias, J. F., and Schwartz, W. B. (1960). The diuretic effects of large does of acetazolamide and an analog lacking carbonic anhydrase inhibiting activity. J. Clin. Invest. 39, 15511559.CrossRefGoogle ScholarPubMed
Relman, A. S., Lennon, E. J., and Lemann, E. J., (1961). Endogene production of fixed acid and the measurement of net balance of acid in normal subjects. J. clin. Invest. 40, 16211630.CrossRefGoogle Scholar
Richet, G., Ardaillou, R. and Amiel, C. (1966). Les sources alimentaires d'ions H+. Bases physiologiques d'une diététique de l'acidose enale. Actualités nébphrologiques de l' Hopital Necker, 1966.Google Scholar
Robinson, D. S. and King, N. R. (1963). Carbonic anhydrase and formation of the hen's egg shell. Nature, Lond. 199, 497499.CrossRefGoogle ScholarPubMed
Romanoff, A. L. and Romanoff, A. J. (1949). The Avian Egg. Wiley, New York.Google Scholar
Sauveur, B. (1967). personal communication.Google Scholar
Schwartz, W. B., Falbrian, A. and Lemieux, G. (1959). The kinetics of bicarbonate reabsorption during acute respiratory acidosis. J. clin. Invest. 38, 939948.CrossRefGoogle ScholarPubMed
Scaeffer, K. E., Nichols, G. and Carey, C. R. (1963). Calcium phosphorus metabolism in man during acclimatization to carbon dioxide. J. appl. Physiol. 18, 10701084.Google Scholar
Severinghaus, J. W., Stupfel, M. and Bradley, A. F. (1956). Variations of serum carbonic acid pK1 with pH and temperature. J. appl. Physiol. 9, 197200.CrossRefGoogle Scholar
Shirley, H. and Nalbandov, A. V. (1956). Effects of neurohypophysectomy in domestic chickens. Endocrinology 58, 477483.CrossRefGoogle ScholarPubMed
Siegmund, P. and Dulce, H. J. (1960). Zur Biochemie der. Knochenauflösung. I. Einfluss des Carboanhydratase inhinitors 2–acetamino–1. 3. 4. –thiodiazol– sulfonamid (5) (Diamoux) auf den calciumstoffwechsel von Legehennen. Hoppe-Seyler's 2. Physiol. Chem. 320, 149159.CrossRefGoogle Scholar
Simkiss, K. (1961). Calcium metabolism and avian reproduction. Biol. Rev. 36, 321367.CrossRefGoogle Scholar
Smith, A. H., Winget, C. M. and Blackard, J. R. (1954). The transfer of phosphorus to the hen's egg, under controlled environment. as traced with radiophosphorus (P32). Poult. Sci. 33, 908919.CrossRefGoogle Scholar
Taylor, T. G. (1967). Personal communication.Google Scholar
Taylor, T. G., Moore, J. H. and Hertelendy, F. (1960). Variations in the mineral composition of individual bones of the skeleton of the domestic fowl. Br. J. Nutr. 14, 4957.CrossRefGoogle ScholarPubMed
Taylor, T. G. and Hertelendy, F. (1961). Changes in the blood calcium associated with egg shell calcification in the domestic hen. II. Changes in the diffusible calcium. Poult. Sci. 40, 115123.CrossRefGoogle Scholar
Taylor, T. G. and Stringer, D. A. (1965). In Sturkie, P. D., Avian Physiology, 485514, Cornell University Press.Google Scholar
Verbanck, M. and Kahn, J. R. (1962). Effects de l'hypercalcémie aigue sur la concentration sanguine et l'excrétion urinaire des électrolytes chez le chien. Revue fr. Etud. clin. biol. 7, 722731.Google Scholar
Winget, C. M. and Smith, A. H. (1959). Dissociation of the calcium protein complexe of laying hen's plasma. Am. J. Physiol. 196, 371374.Google Scholar
Winget, C. M., Smith, A. H. and Hoover, G. N. (1958). Arterio-venous differences in plasma calcium concentration in the shell gland of the laying hen during shell formation. Poult. Sci., 37, 13251328.CrossRefGoogle Scholar
Wolbach, R. A. (1955). Renal regulation of acid-base balance in the chicken. Am. J. Physiol. 181, 149156.Google ScholarPubMed
Wolf, A. V. and Ball, S. M. (1949). Effect of intravenous calcium salts on renal excretion in the dog. Am. J. Physiol. 158, 205210.Google ScholarPubMed