Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-09T03:49:17.135Z Has data issue: false hasContentIssue false

Bioinspired Functionally Graded Nanocomposites Synthesized Through Magnetophoretic Processes for Tailored Stress Reduction

Published online by Cambridge University Press:  23 June 2014

Tommaso Nardi
Affiliation:
Laboratoire de Technologie des Composites et Polymères (LTC) École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
Yves Leterrier*
Affiliation:
Laboratoire de Technologie des Composites et Polymères (LTC) École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
Jan-Anders E. Månson
Affiliation:
Laboratoire de Technologie des Composites et Polymères (LTC) École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
Get access

Abstract

Through a unique combination of magnetophoretic and photopolymerization processes, approximately 150 μm thick functionally graded films based on a UV-curable matrix and containing Fe3O4@SiO2 core-shell nanoparticles are synthesized. Owing to their continuous composition gradients and to the considerable variations in elastic modulus (up to ≈70 %) when going from particle-depleted to particle-enriched regions, such materials are highly efficient in reducing the mechanical stress arising from thermal variations, therefore improving the material efficiency towards durability and delamination problems.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Suresh, S., Science 292, 2447 (2001).CrossRefGoogle Scholar
Suresh, S. and Mortensen, A., Fundamentals of Functionally Graded Materials, Maney, Leeds, UK, 1998.Google Scholar
Ray, A.K., Das, S.K., Mondal, S., and Ramachandrarao, P., J. Mater. Sci. 39, 1055 (2004).CrossRefGoogle Scholar
Philips, J.E., Burns, K.L., Le Doux, J.M., Guldberg, R.E., and Garcia, A.J., Proc. Natl. Acad. Sci. U.S.A. 105, 12170 (2008).CrossRefGoogle Scholar
Studart, A.R., Adv. Funct. Mater. 23, 4423 (2013).CrossRefGoogle Scholar
Birman, V., and Byrd, L.W., Appl. Mech. Rev. 60, 195 (2007).CrossRefGoogle Scholar
Leushake, U., Krell, T., and Schulz, U., Materialwissenschaft und Werkstofftechnik 28, 391 (1997).CrossRefGoogle Scholar
Nardi, T., Leterrier, Y., Karimi, A., and Månson, J. A. E., RSC Adv. 4, 7246 (2014).CrossRefGoogle Scholar
Nardi, T., Sangermano, M., Leterrier, Y., Allia, P., Tiberto, P., and Månson, J. A. E., Polymer 54, 4472 (2013).CrossRefGoogle Scholar
Oliver, W.C., and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
Halpin, J.C., and Kardos, J.L., J. Appl. Phys. 43, 2235 (1972).CrossRefGoogle Scholar
Hashin, Z., J. Appl. Mech. 29, 143 (1962).CrossRefGoogle Scholar
Rosen, B.W., and Hashin, Z., Int. J. Eng. Sci. 8, 157 (1970).CrossRefGoogle Scholar
Zhang, L., D'Acunzi, M., Kappl, M., Auernhammer, G. K., Vollmer, D., van Kats, C.M., and van Blaaderen, A., Langmuir 25, 2711 (2009).CrossRefGoogle Scholar
Townsend, P.H., Barnett, D.M., and Brunner, T.A., J. Appl. Phys. 62, 4438 (1987).CrossRefGoogle Scholar
Zhang, X., Xu, B., Wang, H., Wu, Y., J. Mater. Sci. Technol. 21, 599 (2005).Google Scholar