Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-22T06:37:21.610Z Has data issue: false hasContentIssue false

A Comparative Study of an Inp Quantum Dot Laser and A GAxIN(1-X)P Quantum Well Laser

Published online by Cambridge University Press:  01 February 2011

Y. M. Manz
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stutttgart, Germany
O. G. Schmidt
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stutttgart, Germany
Get access

Abstract

A comparative study between a red-light emitting quantum dot (QD) and quantum well (QW) laser, grown in the same solid-source molcular beam epitaxy (SSMBE) machine under the same conditions, is presented. The QD laser consists of a threefold stack of 3.5 ML InP dots and the QW laser of a 4.5 nm thick compressively strained Ga30In70P layer, both embedded in a Ga52In48P waveguide. The threshold current density of the QD laser is jthr = 1.8 kA/cm2 at 300 K and more than twice as large for the QW laser. Moreover, temperature dependent analysis of spontaneous emission spectra reveals that the threshold current density of the QD device is less temperature dependent than that of the QW laser, although the linewidth of the QD samples is larger.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Arakawa, Y., Sakaki, H., Appl.Phys. Lett. 40, 939 (1982)Google Scholar
[2] Asada, M., Miyamoto, Y., and Suematsu, Y., IEEE J. Quantum Electron. 22, 1915 (1986)Google Scholar
[3] Huang, X., Stintz, A., Hains, C. P., Liu, G. T., Cheng, J., and Malloy, K. J., Electron. Lett. 36, 41 (2000)Google Scholar
[4] Hinzer, K., Lapointe, J., Feng, Y., Delâge, A., and Fafard, S., SpringThorpe, A. J., and Griswold, E. M., J. Appl. Phys. 87, 1496 (2000)Google Scholar
[5] Fafard, S., Hinzer, K., Raymond, S., Dion, M., McCaffrey, J., Feng, Y., Charbonneau, S., Science, 274, 1350 (1996)Google Scholar
[6] Riedel, T., Fehrenbacher, E., Zundel, M. K., Eberl, K., and Hangleiter, A., Jpn. J. Appl. Phys. 38, 597 (1999)Google Scholar
[7] Zundel, M. K., Jin-Phillipp, N. Y.. Phillipp, F., and Eberl, K., Riedel, T., Fehrenbacher, E., and Hangleiter, A., Appl. Phys. Lett. 73, 1784 (1998)Google Scholar
[8] Eberl, K., Kurtenbach, A., Zundel, M., Jin-Phillipp, J.Y., Phillipp, F., Moritz, A., Wirth, R., Hangleiter, A., J. Cryst. Growth 175/176, 702 (1997)Google Scholar
[9] Manz, Y. M., Schmidt, O. G., and Eberl, K., Appl. Phys. Lett. 76, 3343 (2000)Google Scholar
[10] Toivonen, M., Savolainen, P. and Pessa, M., Semicond. Sci. Technol. 11 1923 (1996).Google Scholar
[11] Kurtenbach, A., Eberl, K., Brunner, K. and Abstreiter, G. Low Dimensional Structures prepared by Epitaxial Growth or Regrowth on Patterned Substrates, 5967, (Kluwer Academic Publishers, Netherlands 1995).Google Scholar
[12] Nano-Optoelectronics, edited by Grundmann, M., in press.Google Scholar
[13] Marzin, J. Y. and J. M., Superlattices and Microstruct. 5, 51 (1990)Google Scholar
[14] Zundel, M. K., Specht, P., and Eberl, K., Jin-Phillipp, N. Y. and Phillipp, F., Appl. Phys. Lett. 71, 2972 (1997)Google Scholar
[15] Schmidt, O. G., Kirstaedter, N., Ledentsov, N. N., Electronic Letters, 32, 1302 (1996)Google Scholar
[16] Jalonen, M., Toivonen, M., Savolainen, P., Köngäs, J., and Pessa, M., Appl. Phys. Lett. 71, 479 (1997)Google Scholar