Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-11T09:27:22.359Z Has data issue: false hasContentIssue false

2D Assemblies of Silicon Nanocrystallites Prepared by sol-gel Method from Triethoxysilane.

Published online by Cambridge University Press:  11 February 2011

Jerôme Rouquette
Affiliation:
Laboratoire de Physico-chimie de la Matière Condensée -, Université de Montpellier II - Case Courrier 084 – 34095 Montpellier cedex 5 -, France
Monique Pauthe
Affiliation:
Laboratoire de Physico-chimie de la Matière Condensée -, Université de Montpellier II - Case Courrier 084 – 34095 Montpellier cedex 5 -, France
Michel Ramonda
Affiliation:
Laboratoire d'Acoustique, d'Imagerie et de Nanophysique, - Université de Montpellier II - Case Courrier 082 – 34095 Montpellier cedex 5, -, France
Thierry Taliercio
Affiliation:
Groupe d'Etude des Semiconducteurs, - Université de Montpellier II - Case Courrier 074 – 34095 Montpellier cedex 5, -, France
Bernard Gil
Affiliation:
Groupe d'Etude des Semiconducteurs, - Université de Montpellier II - Case Courrier 074 – 34095 Montpellier cedex 5, -, France
Kevin P. O'Donnell
Affiliation:
University of Strathclyde – Glasgow-G4 ONG, Scotland
Get access

Extract

The sol-gel route using triethoxysilane as a precursor has been used to prepare films of Si nanocrystallites. These films were deposited on (001)-oriented silicon substrates either by spin coating deposition of a liquid phase that was further heat-treated under static vacuum (dots embedded in silica gel) or by vapour phase from the thermal decomposition under vacuum of the dried gels (uncapped dots). We address the structural characterisation of these samples and we find that a spontaneous orientation of the crystallites is obtained for heating treatment beyond 800°C if the dots are deposited in the vapour phase. The optical properties of dots embedded in silica gel reveal a strong red-orange photoluminescence due to carrier recombination at the dot surface, which is noticeably contaminated by oxygen and hydrogen.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gullis, A.G., Canham, L.T., and Calcott, P.D.J., Journal of Applied Physics, 82, 909, (1997)Google Scholar
Kovalev, D., Heckler, H., Polisski, G., and Koch, F., Phys. Stat. Solidi (b), 215, 871, (1999)Google Scholar
Müller, R., Chem. Tech., 2, 7, (1950),Google Scholar
Kovalev, D., Heckler, H., Polisski, G., and Koch, F., Phys. Stat. Solidi (b), 2, 41, (1950)Google Scholar
Pauthe, M., Phalippou, J., Corriu, R.J.P., Leclercq, D., Vioux, A., J. Non-cryst. Solids, 113, 21, (1989)Google Scholar
5. Pauthe, M., Bernstein, E., Dumas, J., Saviot, L., Pradel, A., and Ribes, M., Journal Materials Chemistry, 9, 187, (1999)Google Scholar
6. Hogness, T.R., Wilson, T.L., Johnson, W.C., J. am. Chem. Soc., 58, 108, (1936)Google Scholar
7. Okada, T., Iwaki, T., Yamamoto, K., Kasahara, H., Abe, K., Solid State Communications, 49, 809, (1984)Google Scholar
8. Delerue, C., Lannoo, M., and Allan, G., Phys. Rev. Lett., 84, 2457, (2000)Google Scholar
9. Wolkin, M.V., Jorne, J., Fauchet, P.M., Allan, G. and Delerue, C., Phys. Rev. Lett., 82, 197, (1999)Google Scholar
10. Prokes, S.M., Glembocki, O.J., Bermudez, V.M., Kaplan, R., Friedersdorf, L.E. and Searson, P.C., Phys. Rev. B, 45, 13 788, (1992)Google Scholar
11. Rohlfing, M. and Louie, S.G., Phys. Rev. Lett. 80, 3320, (1998)Google Scholar
12. Porter, A.R., Towler, M.D. and Needs, R.J., Phys. Rev. B, 64, 03 5320, (2001)Google Scholar
13. Miyazaki, S., Shiba, K., Miyoshi, N., Etoh, K., Kohno, A. and Hirose, M., Mat. Res. Soc. Symp. Proc. vol. 536, 45, (1999)Google Scholar
14. Chen, X., Uttamchandari, D., Sander, D. and O'Donnell, K.P., Physica B, 185, 603, (1993)Google Scholar