Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-10T12:26:21.555Z Has data issue: false hasContentIssue false

Efficient generation of proton bunches by intense laser pulse with a double-slice-foil target

Published online by Cambridge University Press:  03 July 2012

JUN ZHENG
Affiliation:
Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China (jzheng@sjtu.edu.cn)
ZHENG-MING SHENG
Affiliation:
Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China (jzheng@sjtu.edu.cn) Beijing National Laboratory of Condensed Matter, Physics, Institute of Physics, CAS, Beijing 100190, China
JIN-LU LIU
Affiliation:
Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China (jzheng@sjtu.edu.cn)
WEI-MIN ZHOU
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China
HAN XU
Affiliation:
Institute of Computer Science, National University of Defense Technology, Changsha 410073, China
JIE ZHANG
Affiliation:
Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China (jzheng@sjtu.edu.cn) Beijing National Laboratory of Condensed Matter, Physics, Institute of Physics, CAS, Beijing 100190, China

Abstract

A double-slice-foil target is proposed for the generation of quasi-monoenergetic proton bunches by intense laser pulses. In this new target structure, two symmetrical solid slices are adjoined obliquely to the front side of a plane double-layer target. Two-dimensional particle-in-cell simulations show that a large number of hot electrons are pulled out from solid slices and accelerated forward by direct laser acceleration, which lead to significant enhancement of the sheath field and the produced proton beam energy as compared with the normal plane double-layer target and some other modified targets. It appears that well-collimated proton bunches with energy larger than 200 MeV can be produced at the focused laser intensity of about 1021W/cm2 with the proposed target design.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borghesi, M., Campbell, D. H., Schiavi, A., Haines, M. G., Willi, O., MacKinnon, A. J., Patel, P., Gizzi, L. A., Galimberti, M., Clarke, R. J. et al. 2002 Electric field detection in laser-plasma interaction experiments via the proton imaging technique. Phys. Plasmas 9, 22142220.CrossRefGoogle Scholar
Bulanov, S. V. and Khoroshkov, V. S. 2002 Feasibility of using laser ion accelerators in proton therapy. Plasma Phys. Rep. 28, 453456.CrossRefGoogle Scholar
Cao, L. H., Yu, W., Yu, M. Y., Xu, H., He, X. T., Gu, Y. Q., Liu, Z. J., Li, J. H. and Zheng, C. Y. 2008 Nonlinear laser focusing using a conical guide and generation of energetic ions. Phys. Rev. E 78, 036405-16.Google ScholarPubMed
Chen, M., Sheng, Z. M., Zheng, J., Ma, Y. Y., Bari, M. A., Li, Y. T. and Zhang, J. 2006 Surface electron acceleration in relativistic lasersolid interactions. Opt. Express 14, 30933098.CrossRefGoogle ScholarPubMed
Clark, E. L., Krushelnick, K., Zepf, M., Beg, F. N., Tatarakis, M., Machacek, A., Santala, M. I. K., Watts, I., Norreys, P. A. and Dangor, A. E. 2000 Energetic heavy-ion and proton generation from ultraintense laser-plasma interactions with solids. Phys. Rev. Lett. 85, 16541657.CrossRefGoogle ScholarPubMed
Esirkepov, TZh, Bulanov, S. V., Nishihara, K., Tajima, T., Pegoraro, F., Khoroshkov, V. S., Mima, K., Daido, H., Kato, Y., Kitagawa, Y. et al. 2002 Proposed double-layer target for the generation of high-quality laser-accelerated ion beams. Phys. Rev. Lett. 89 (17), 175003-14.CrossRefGoogle ScholarPubMed
Li, Y. T., Yuan, X. H., Xu, M. H., Zheng, Z. Y., Sheng, Z. M., Chen, M., Ma, Y. Y., Liang, W. X., Yu, Q. Z., Zhang, Y. et al. 2006 Observation of a fast electron beam emitted along the surface of a target irradiated by intense femtosecond laser pulses. Phys. Rev. Lett. 96, 165003-14.CrossRefGoogle ScholarPubMed
Ma, Y. Y., Sheng, Z. M., Li, Y. T., Chang, W. W., Yuan, X. H., Chen, M., Wu, H. C., Zheng, J. and Zhang, J. 2006 Dense quasi-monoenergetic attosecond electron bunches from laser interaction with wire and slice targets. Phys. Plasmas 13, 110702-1–4.CrossRefGoogle Scholar
Macchi, A., Cattani, F., Liseykina, T. V. and Cornolti, F. 2005 Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94, 165003-14.CrossRefGoogle ScholarPubMed
Mora, P. 2003 Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002-14.CrossRefGoogle ScholarPubMed
Morita, T., Esirkepov, TZh, Bulanov, S. V., Koga, J. and Yamagiwa, M. 2008 Tunable high-energy ion source via oblique laser pulse incident on a double-layer target. Phys. Rev. Lett. 100, 145001-14.CrossRefGoogle ScholarPubMed
Pukhov, A., Sheng, Z. M. and Meyer-ter-Vehn, J. 1999 Particle acceleration in relativistic laser channels. Phys. Plasmas 6, 28472854.CrossRefGoogle Scholar
Roth, M., Cowan, T. E., Key, M. H, Hatchett, S. P., Brown, C., Fountain, W., Johnson, J., Pennington, D. M., Snavely, R. A., Wilks, S. C. et al. 2011 Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.CrossRefGoogle Scholar
Schreiber, J., Bell, F., Grüner, F., Schramm, U., Geissler, M., Schnürer, M., Ter-Avetisyan, S., Hegelich, B. M., Cobble, J., Brambrink, E. et al. 2006 Analytical model for ion acceleration by high-intensity laser pulses. Phys. Rev. Lett. 97, 045005-14.CrossRefGoogle ScholarPubMed
Schwoerer, H., Pfotenhauer, S., Jackel, O., Amthor, K. U., Liesfeld, B., Ziegler, W., Sauerbrey, R., Ledingham, K. W. D. and Esirkepov, T. 2006 Laser–plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature 439, 445448.CrossRefGoogle ScholarPubMed
Sonobe, R., Kawata, S., Miyazaki, S., Nakamura, M. and Kikuchi, T. 2005 Suppression of transverse proton beam divergence by controlled electron cloud in laser-plasma interactions. Phys. Plasmas 12, 073104-16.CrossRefGoogle Scholar
Wang, F. C., Shen, B. F., Zhang, X. M., Jin, Z. Y., Wen, M., Ji, L. L., Wang, W. P., Xu, J. C., Yu, M. Y. and Cary, J. 2009 High-energy monoenergetic proton bunch from laser interaction with a complex target. Phys. Plasmas 16, 093112-15.CrossRefGoogle Scholar
Wilks, S. C., Langdon, A. B., Cowan, T. E., Roth, M., Singh, M., Hatchett, S., Key, M. H., Pennington, D., Mackinnon, A. and Snavely, R. A. 2001 Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8, 542549.CrossRefGoogle Scholar
Xu, H., Chang, W. W., Zhuo, H. B., Cao, L. H. and Yue, Z. W. 2002 Parallel programming of 2 1/2-dimensioal PIC under distributed-memory parallel environments. Chin. J. Comput. Phys. 19, 305310 (in Chinese).Google Scholar
Yan, X., Lin, C., Sheng, Z. M., Guo, Z. Y., Liu, B. C., Lu, Y. R., Fang, J. X. and Chen, J. E. 2008 Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime. Phys. Rev. Lett. 100, 135003-14.CrossRefGoogle ScholarPubMed
Yin, L., Albright, B. J., Hegelich, B. M. and Fernandez, J. C. 2006 GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298.CrossRefGoogle Scholar
Zeil, K., Kraft, S. D., Bock, S., Bussmann, M., Cowan, T. E., Kluge, T., Metzkes, J., Richter, T., Sauerbrey, R. and Schramm, U. 2010 The Scaling of proton energies in ultrashort pulse laser plasma acceleration. New J. Phys. 12, 045015-116.CrossRefGoogle Scholar
Zheng, J., Mima, K., Sheng, Z. M. and Li, Y. T. 2008 Phase space modulation of laser-produced protons with a double-foil target generation of quasi-monoenergetic proton beams. Phys. Plasmas 15, 053106-15.CrossRefGoogle Scholar
Zheng, J., Sheng, Z. M., Peng, X. Y. and Zhang, J. 2005 Energetic electrons and protons generated from the interaction of ultrashort laser pulses with microdroplet plasmas. Phys. Plasmas 12, 113105-15.CrossRefGoogle Scholar
Zhou, C. T. and He, X. T. 2007 Influence of a large oblique incident angle on energetic protons accelerated from solid-density plasmas by ultraintense laser pulses. Appl. Phys. Lett. 90, 031503-13.CrossRefGoogle Scholar
Zhou, W. M., Gu, Y. Q., Hong, W., Cao, L. F., Zhao, Z. Q., Ding, Y. K., Zhang, B. H., Cai, H. B. and Mima, K. 2010 Enhancement of monoenergetic proton beams via cone substrate in high intensity laser pulse-double layer target interactions. Laser Part. Beams 28, 585590.CrossRefGoogle Scholar