Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-21T18:31:50.298Z Has data issue: false hasContentIssue false

The Early Stages of the Microstructural Development of the Colony Structure in Bi-2223 Tapes

Published online by Cambridge University Press:  18 March 2011

T. G. Holesinger*
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 U.S.A.
Get access

Abstract

The current protocol for processing (Bi,Pb)2Sr2Ca2Cu3O10-x (Bi-2223) multifilamentary tapes involves the in situ formation of the primary phase from a suitable mixture of precursor phases. As such, the developments during the first few minutes of heat treatment determine to a large extent the efficiency of primary phase development, competing secondary phase development, texture evolution, and grain-to-grain connectivity. This work documents the development of the liquid phase, secondary phases, defects which may affect alignment and reaction kinetics, and the precipitation of Bi-2223 from the liquid phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eibl, O., Superconductor Science and Technology 8, 833861 (1995).Google Scholar
2. Wu, Li-jun, Wang, Y.L., Bian, W., Zhu, Y., Thurston, T.R., Sabatini, R.L., Haldar, P., and Suenaga, M., Journal of Materials Research 12 (11), 30553073 (1997).Google Scholar
3. Yan, Y., Kirk, M.A., and Evetts, J.E., Journal of Materials Research 12 (11), 30093028 (1997).Google Scholar
4. Holesinger, T.G., Bingert, J.F., Willis, J.O., Li, Q., Parrella, R.D., Teplitsky, M.D., Rupich, M.W., and Riley, G.N. Jr, IEEE Transactions on Applied Superconductivity 9 (2), 24402446 (1999).Google Scholar
5. Holesinger, T.G., Bingert, J.F., Teplitsky, M., Li, Q., Parrella, R.D., Rupich, M.P., and Riley, G.N. Jr, Journal of Materials Research 15 (2), 285295 (2000).Google Scholar
6. Giannini, E., Bellingeri, E., Passerini, R., and Flukiger, R., Physica C315, 185197 (1999).Google Scholar
7. Poulsen, H.F., Frello, T., Anderson, N.H., Bentzon, M.D., and Zimmermann, M. van, Physica C 298, 265278 (1998).Google Scholar
8. Holesinger, T.G., Miller, D.J., and Chumbley, L.S., Journal of Materials Research 7 (7), 16581671 (1992).Google Scholar
9. Holesinger, T.G., Ayala, A., Ruxandra, M.B., and Maroni, V.A., IEEE Transactions on Applied Superconductivity 11 (1), 29912994 (2001).Google Scholar
10. Grindatto, D.P., Grivel, J.C., Grasso, G., Nissen, H.-U., and Flukiger, R., Physica C 298, 4148 (1998).Google Scholar
11. Luo, J.S., Merchant, N., Maroni, V.A., Gruen, D.M., Tani, B.S., Carter, W.L., and Riley, G.N. Jr, Applied Superconductivity 1, 101107 (1993).Google Scholar
12. Morgan, P.E.D., Housley, R.M., Porter, J.R., and Ratto, J.J., Physica C 176, 279284 (1991).Google Scholar