Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T15:38:56.826Z Has data issue: false hasContentIssue false

Optical Activation Behavior of Ion Implanted Acceptor Species in GaN

Published online by Cambridge University Press:  03 September 2012

B.J. Skromme
Affiliation:
Department of Electrical Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, AZ 85287-5706
G.L. Martinez
Affiliation:
Department of Electrical Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, AZ 85287-5706
Get access

Abstract

Ion implantation is used to investigate the spectroscopic properties of Mg, Be, and C acceptors in GaN. Activation of these species is studied using low temperature photoluminescence (PL). Low dose implants into high quality undoped hydride vapor phase epitaxial (HVPE) material are used in conjunction with high temperature (1300 °C) rapid thermal anneals to obtain high quality spectra. Dramatic, dose-dependent evidence of Mg acceptor activation is observed without any co-implants, including a strong, sharp neutral Mg acceptor-bound exciton and strong donor-acceptor pair peaks. Variable temperature measurements reveal a band-to-acceptor transition, whose energy yields an optical binding energy of 224 meV. Be and C implants yield only slight evidence of shallow acceptor-related features and produce dose-correlated 2.2 eV PL, attributed to residual implantation damage. Their poor optical activation is tentatively attributed to insufficient vacancy production by these lighter ions. Clear evidence is obtained for donor-Zn acceptor pair and acceptor-bound exciton peaks in Zn-doped HVPE material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pankove, J.I. and Hutchby, J.A., J. Appl. Phys. 47, 5387 (1976).Google Scholar
2. Tan, H.H., Williams, J.S., Zou, J., Cockayne, D.J.H., Pearton, S.J., Zolper, J.C., and Stall, R.A., Appl. Phys. Lett. 72, 1190 (1998).Google Scholar
3. Cao, X.A., Abernathy, C.R., Singh, R.K., Pearton, S.J., Fu, M., Sarvepalli, V., Sekhar, J.A., Zolper, J.C., Rieger, D.J., Han, J., Drummond, T.J., Shul, R.J., and Wilson, R.G., Appl. Phys. Lett. 73, 229 (1998) and references therein.Google Scholar
4. Suski, T., Jun, J., Leszczynski, M., Teisseyre, H., Strite, S., Rockett, A., Pelzmann, A., Kamp, M., and Ebeling, K.J., J. Appl. Phys. 84, 1155 (1998).Google Scholar
5. Nakamura, S., Iwasa, N., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 31, 1258 (1992).Google Scholar
6. Strite, S., Epperlein, P.W., Dommann, A., Rockett, A., and Broom, R.F., Mater. Res. Soc. Symp. Proc. 395, 795 (1996).Google Scholar
7. Silkowski, E., Yeo, Y.K., Hengehold, R.L., Khan, M.A., Lei, T., Evans, K., and Cerny, C., Mater. Res. Soc. Symp. Proc. 395, 813 (1996).Google Scholar
8. Skromme, B.J., Zhao, H., Goldenberg, B., Kong, H.S., Leonard, M.T., Bulman, G.E., Abernathy, C.R., and Pearton, S.J., Mater. Res. Soc. Symp. Proc. 449, 713 (1996).Google Scholar
9. Johnson, M.A.L., Yu, Z., Boney, C., Hughes, W.C., Cook, J.W. Jr., Schetzina, J.F., Zhao, H., Skromme, B.J., and Edmond, J.A., Mater. Res. Soc. Symp. Proc. 449, (1996).Google Scholar
10. Godlewski, M., Wysmolek, A., Pakula, K., Baranowski, J.M., Grzegory, I., Jun, J., Porowski, S., Bergman, J.P., and Monemar, B., in Proc. Internat. Sympos. Blue Laser & Light Emitting Diodes, p. 356 (1996).Google Scholar
11. Zhang, R. and Kuech, T.F., Mater. Res. Sympos. Proc. 482, 709 (1998).Google Scholar
12. Saarinen, K., Nissilä, J., Hautojärvi, P., Likonen, J., Suski, T., Grzegory, I., Lucznik, B., and Porowski, S., Appl. Phys. Lett. 75, 2441 (1999).Google Scholar
13. Dewsnip, D.J., Andrianov, A.V., Harrison, I., Orton, J.W., Lacklison, D.E., Ren, G.B., Hooper, S.E., Cheng, T.S., and Foxon, C.T., Semicond. Sci. Technol. 13, 500 (1998).Google Scholar
14. Sánchez, F.J., Calle, F., Sanchez-Garcia, M.A., Calleja, E., Muñoz, E., Molloy, C.H., Somerford, D.J., Koschnick, F.K., Michael, K., and Spaeth, J.-M., MRS Internet J. Nitride Semicond. Res. 3, 19 (1998).Google Scholar
15. Salvador, A., Kim, W., Aktas, Ö., Botchkarev, A., Fan, Z., and Morkoç, H., Appl. Phys. Lett. 69, 2692 (1996).Google Scholar
16. Amano, H., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys. 27, L1384 (1988).Google Scholar
17. Ilegems, M., Dingle, R., and Logan, R.A., J. Appl. Phys. 43, 3797 (1972).Google Scholar