Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-25T04:07:26.764Z Has data issue: false hasContentIssue false

Pine forest lichens under eutrophication generated by a great cormorant colony

Published online by Cambridge University Press:  11 February 2014

Jurga MOTIEJŪNAITĖ
Affiliation:
Nature Research Centre, Institute of Botany, Žaliųjų Ežerų Str. 49, LT-08406 Vilnius, Lithuania. Email: jurga.motiejunaite@botanika.lt
Reda IRŠĖNAITĖ
Affiliation:
Nature Research Centre, Institute of Botany, Žaliųjų Ežerų Str. 49, LT-08406 Vilnius, Lithuania. Email: jurga.motiejunaite@botanika.lt
Gražina ADAMONYTĖ
Affiliation:
Nature Research Centre, Institute of Botany, Žaliųjų Ežerų Str. 49, LT-08406 Vilnius, Lithuania. Email: jurga.motiejunaite@botanika.lt
Mindaugas DAGYS
Affiliation:
Nature Research Centre, Institute of Ecology, Akademijos Str. 2, LT–08412 Vilnius, Lithuania
Ričardas TARAŠKEVIČIUS
Affiliation:
Nature Research Centre, Institute of Geology and Geography, Ševčenkos Str. 13, LT-03223 Vilnius, Lithuania
Dalytė MATULEVIČIŪTĖ
Affiliation:
Nature Research Centre, Institute of Botany, Žaliųjų Ežerų Str. 49, LT-08406 Vilnius, Lithuania. Email: jurga.motiejunaite@botanika.lt
Judita KOREIVIENĖ
Affiliation:
Nature Research Centre, Institute of Botany, Žaliųjų Ežerų Str. 49, LT-08406 Vilnius, Lithuania. Email: jurga.motiejunaite@botanika.lt

Abstract

Lichen community changes were investigated on trees within a colony of great cormorants (Phalacrocorax carbo sinensis) established in a pine forest on the Curonian Spit, western Lithuania. The impact of birds on the forest has altered the number and characteristics of substrata available to lichens. The lowest number of lichen species and occurrences was registered on trees in the most active part of the colony with the highest nest density. Lichen community patterns were most strongly related to P and Ca content in substrata and pH values. Some acidophytic species showed negative correlations, both with long-term and short-term ornithogenic influence. However, three acidophytes (Chaenotheca ferruginea, Lepraria incana, Coenogonium pineti) demonstrated an affinity for the transitional zone and recently occupied trees, and furthermore, C. pineti apparently reacted positively to a short-term ornithogenic influence but negatively to a long-term one. These three lichens, along with algae, were the main, and often the only, components of epiphytic communities on trees at the edge of the colony and apparently indicated the crucial point of the acidophytic community under the increasing load of nutrients. All nitrophytic species showed an affinity for a long-term bird influence and reacted negatively to a short-term influence. Only free-living algae (predominating species Desmococcus olivaceus) showed a clear affinity for trees occupied by bird nests. Hypogymnia physodes was found to be an indicator for early environmental changes following eutrophication. The study also showed that high concentrations of P did not have a mitigating effect on the detrimental impact brought about by increases in N and pH levels, but was possibly equally detrimental to acidophytic lichens.

Type
Articles
Copyright
Copyright © British Lichen Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbot, I., Marchant, N. & Cranfield, R. (2000) Long-term change in the floristic composition and vegetation structure of Carnac Island, Western Australia. Journal of Biogeography 27: 333346.CrossRefGoogle Scholar
Adamonytė, G., Iršėnaitė, R., Motiejūnaitė, J., Matulevičiūtė, D. & Taraškevičius, R. (2013) Myxomycetes in a forest affected by great cormorant colony: a case study in Western Lithuania. Fungal Diversity 59: 131146.CrossRefGoogle Scholar
Anderson, W. B. & Polis, G. A. (1999) Nutrient fluxes from water to land: seabirds affect plant nutrient status on Gulf of California islands. Oecologia 118: 324332.CrossRefGoogle ScholarPubMed
Armstrong, R. A. (1984) The influence of bird droppings and uric acid on the radial growth of five species of saxicolous lichens. Environmental and Experimental Botany 24: 9599.CrossRefGoogle Scholar
Armstrong, R. A. (1994) The influence of bird droppings on the growth of lichen fragments transplanted to slate and cement substrata. Symbiosis 17: 7586.Google Scholar
Armstrong, R. A. (2000) Competitive interactions between four foliose lichen species with and without nutrient enrichment. Symbiosis 28: 323335.Google Scholar
Asman, W. A. H., Ridder, T. B., Reijnders, H. F. R. & Slanina, J. (1982) Influence and prevention of bird-droppings in precipitation chemistry experiments. Water, Air, and Soil Pollution 17: 415420.CrossRefGoogle Scholar
Bachrach, U. (1957) The aerobic breakdown of uric acid by certain Pseudomonads. Journal of General Microbiology 17: 111.CrossRefGoogle ScholarPubMed
Benner, J. W. & Vitousek, P. M. (2007) Development of a diverse epiphyte community in response to phosphorus fertilization. Ecology Letters 10: 628636.CrossRefGoogle ScholarPubMed
Brasseur, G. P., Prinn, R. G. & Pszenney, A. P. (eds) (2002) Atmospheric Chemistry in a Changing World. Heidelberg: Springer-Verlag.Google Scholar
Ellis, J. C., Fariña, J. M. & Witman, J. D. (2006) Nutrient transfer from sea to land: the case of gulls and cormorants in the Gulf of Maine. Journal of Animal Ecology 75: 565574.CrossRefGoogle ScholarPubMed
Ettl, H. & Gärtner, G. (1995) Syllabus der Boden-, Luft- und Flechtenalgen. Stuttgart: Gustav Fischer.Google Scholar
Frati, L., Santoni, S., Nicolardi, V., Gaggi, C., Brunialti, G., Guttová, A., Gaudino, S., Pati, A., Pirintsos, S. A. & Loppi, S. (2007) Lichen biomonitoring of ammonia emission and nitrogen deposition around a pig farm. Environmental Pollution 146: 311316.CrossRefGoogle Scholar
Frati, L., Brunialti, G. & Loppi, S. (2008) Effects of reduced nitrogen compounds on epiphytic lichen communities in Mediterranean Italy. Science of the Total Environment 407: 630637.CrossRefGoogle ScholarPubMed
Galvonaitė, A., Misiūnienė, M., Valiukas, D. & Buitkuvienė, M. S. (2007) Lietuvos Klimatas. Vilnius: Lietuvos hidrometeorologijos tarnyba.Google Scholar
García, L. V., Ramo, C., Aponte, C., Moreno, A., Domínguez, M. T., Gómez-Aparicio, L., Redondo, R. & Marañón, T. (2011) Protected wading bird species threaten relict centenarian cork oaks in a Mediterranean Biosphere Reserve: a conservation management conflict. Biological Conservation 144: 764771.CrossRefGoogle Scholar
Gordon, C., Wynn, J. M. & Woodin, S. J. (2001) Impacts of increased nitrogen supply on high Arctic heath: the importance of bryophytes and phosphorus availability. New Phytologist 149: 461471.CrossRefGoogle ScholarPubMed
Grandin, U. (2011) Epiphytic algae and lichen cover in boreal forests – a long-term study along a N and S deposition gradient in Sweden. Ambio 40: 857866.CrossRefGoogle Scholar
Grönlie, A. M. (1948) The ornithocoprophilous vegetation of the bird-cliffs of Rost in the Lofoten Islands, northern Norway. Nytt Magazin for Naturvidenskaberne 86: 117243.Google Scholar
Gudelis, V. (1998) Lietuvos Įjūris ir Pajūris. Vilnius: Lietuvos mokslas.Google Scholar
Hauck, M. & Wirth, V. (2010) Preference of lichens for shady habitats is correlated with intolerance to high nitrogen levels. Lichenologist 42: 475484.CrossRefGoogle Scholar
Heatwole, H. (1971) Marine dependent terrestrial biotic communities on some cays in the Coral Sea. Ecology 52: 363366.CrossRefGoogle Scholar
Ishida, A. (1996) Effects of the common cormorant, Phalacrocorax carbo, on evergreen forests in two nest sites at Lake Biwa, Japan. Ecological Research 11: 193200.CrossRefGoogle Scholar
Johansson, O., Olofsson, J., Giesjler, R. & Palmqvist, K. (2011) Lichen responses to nitrogen and phosphorus additions can be explained by the different symbiont responses. New Phytologist 191: 795805.CrossRefGoogle ScholarPubMed
Jončys, F. & Paulaitis, A. (1987) Valstybinio Kuršių nerijos miško parko Juodkrantės girininkijos taksoraštis. Miškotvarka 1987 m. Kaunas: Miškotvarkos institutas.Google Scholar
Kameda, K., Koba, K., Yoshimizu, C., Fujiwara, S., Hobara, S., Koyama, L., Tokuchi, N. & Takayanagi, A. (2000) Nutrient flux from aquatic to terrestrial ecosystem mediated by the Great Cormorant. Sylvia 36 (Suppl.): 5455.Google Scholar
Kameda, K., Koba, K., Hobara, S., Osono, T. & Terai, M. (2006). Mechanism of long-term effects of cormorant-derived nitrogen in a lakeside forest. Hydrobiologia 567: 6986.CrossRefGoogle Scholar
Kotlov, Y. V. (1994) Lichens from two bird colonies in the West Siberian Arctic. Graphis Scripta 6: 5759.Google Scholar
Ligeza, S. & Smal, H. (2003) Accumulation of nutrients in soils affected by perennial colonies of piscivorous birds with reference to biogeochemical cycles of elements. Chemosphere 52: 595602.CrossRefGoogle ScholarPubMed
Lõhmus, A., Lõhmus, P. & Vellak, K. (2007) Substratum diversity explains landscape-scale co-variation in the species-richness of bryophytes and lichens. Biological Conservation 135: 405414.CrossRefGoogle Scholar
Loppi, S., Pirintsos, S. A. & De Dominicis, V. (1997) Analysis of the distribution of epiphytic lichens on Quercus pubescens along an altitudinal gradient in a Mediterranean area (Tuscany, central Italy). Israel Journal of Plant Sciences 45: 5358.CrossRefGoogle Scholar
Mader, D. (1995) Aeolian and Adhesion Morphodynamics and Phytoecology in Recent Coastal and Inland Sand and Snow Flats and Dunes from Mainly North Sea and Baltic Sea to Mars and Venus. Vol. 1: North Sea and Baltic Sea. Frankfurt/Main: Peter Lang, Europäischer Verlag der Wissenschaften,Google Scholar
Maesako, Y. (1991) Effect of streaked shearwater (Calonectris leucomelas) on species composition of Persea thunbergii forest on Kanmurijima Island, Kyoto Prefecture, Japan. Ecological Research 6: 371378.CrossRefGoogle Scholar
Maesako, Y. (1999) Impact of streaked shearwater (Calonectris leucomelas) on tree seedling regeneration in a warm-temperate evergreen forest on Kanmurijima Island, Japan. Plant Ecology 145: 183190.CrossRefGoogle Scholar
Makkonen, S., Hurri, R. S. K. & Hyvärinen, M. (2007) Differential responses of lichen symbionts to enhanced nitrogen and phosphorus availability: an experiment with Cladina stellaris . Annals of Botany 99: 877884.CrossRefGoogle ScholarPubMed
McCune, B. & Caldwell, B. A. (2009) A single phosphorus treatment doubles growth of cyanobacterial lichen transplants. Ecology 90: 567570.CrossRefGoogle ScholarPubMed
McCune, B. & Mefford, M. J. (2011) PC-ORD. Multivariate Analysis of Ecological Data. Version 6. Gleneden Beach, Oregon: MjM Software.Google Scholar
Morkūnaitė, R., Baužienė, I. & Česnulevičius, A. (2011) Parabolic dunes and soils of the Curonian Spit, south-eastern Baltic Sea coast. Baltica 24: 95106.Google Scholar
Mun, H. T. (1997) Effects of colony nesting of Ardea cinerea and Egretta alba modesta on soil properties and herb layer composition in Pinus densiflora forest. Plant and Soil 197: 5559.CrossRefGoogle Scholar
Oelkers, E. H. (2008) Phosphate mineral reactivity: from global cycles to sustainable development. Mineralogical Magazine 72: 337340.CrossRefGoogle Scholar
Orange, A., James, P. W. & White, F. J. (2001) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Peyrat, J. (2007) Development, properties and classification of dune soils in the Curonian Spit National Park, Russian part. Geologija 59: 5964.Google Scholar
Rindi, F., Allali, H. A., Lam, D. W. & López-Bautista, J. M. (2010) An overview of the biodiversity and biogeography of terrestrial green algae. In Biodiversity Hotspots (Rescigno, V. & Maletta, S., eds): 105122. New York: Nova Science Publishers.Google Scholar
Sanchez-Piñero, F. & Polis, G. A. (2000) Bottom-up dynamics of allochthonous input: direct and indirect effects of seabirds on islands. Ecology 81: 31173132.CrossRefGoogle Scholar
Sancho, L. G. (1988) La vegetación liquénica ornitocoprófila de espolones en el alto Sistema Central español. Acta Botanica Barcinonensia 37: 223236.Google Scholar
Smith, C. W., Aptroot, A., Coppins, B. J., Fletcher, A., Gilbert, O. L., James, P. W. & Wolseley, P. A. (eds) (2009) The Lichens of Great Britain and Ireland. London: British Lichen Society.Google Scholar
Søchting, U. (1996) Lichens as monitors of nitrogen deposition. Cryptogamic Botany 5: 264269.Google Scholar
Søchting, U. (1997) Epiphyllic cover on spruce needles in Denmark. Annales Botanici Fennici 34: 157164.Google Scholar
Stephenson, S. L., Estrada-Torres, A., Schnittler, M., Lado, C., Wrigley de Basanta, D. & Ogata, N. (2003) Distribution and ecology of myxomycetes in the forest of Yucatán. In The Lowland Maya Area: Three Millennia at the Human-Wildland Interface (Gómez-Pompa, A., Allen, M. F., Fedick, S. & Jiménez-Osornio, J. J., eds): 241259. New York, London, Oxford: The Haworth Press.Google Scholar
Valladares, F. & Sancho, L. G. (1993) Biología de las comunidades liquénicas de los posaderos rocosos de aves en el Sistema Central español. Rivasgodaya 7: 568.Google Scholar
Van Herk, C. M. (1999) Mapping of ammonia pollution with epiphytic lichens in The Netherlands. Lichenologist 31: 920.CrossRefGoogle Scholar
Van Herk, C. M., Mathijssen-Spiekman, E. A. M. & de Zwart, D. (2003) Long distance nitrogen air pollution effects on lichens in Europe. Lichenologist 35: 347359.CrossRefGoogle Scholar
Wirth, V. (2010) Ökologische Zeigerwerte von Flechten—erweiterte und aktualisierte Fassung. Herzogia 23: 229248.CrossRefGoogle Scholar
Wolseley, P., James, P. W., Theobald, M. R. & Sutton, M. A. (2006) Detecting changes in epiphytic lichen communities at sites affected by atmospheric ammonia from agricultural sources. Lichenologist 38: 161176.CrossRefGoogle Scholar
Zhang, X., Liu, W., Bai, Y., Zhang, G. & Han, X. (2011) Nitrogen deposition mediates the effects and importance of chance in changing biodiversity. Molecular Ecology 20: 429438.CrossRefGoogle ScholarPubMed
Źółkóś, K. & Markowski, R. (2006) Pressure of the Grey Heron breeding colony (Ardea cinerea) on the phytocoenosis of lowland acidophilous beech forest in the ‘Czapliniec w Wierzysku’ reserve (Kaszubskie Lake District). Biodiversity Research and Conservation 3–4: 337339.Google Scholar
Źółkóś, K. & Meissner, W. (2008) The effect of grey heron (Ardea cinerea L.) colony on the surrounding vegetation and the biometrical features of three undergrowth species. Polish Journal of Ecology 58: 6574.Google Scholar
Źółkóś, K., Kukwa, M. & Afranowicz-Cieślak, R. (2013) Changes in the epiphytic lichen biota in the Scots pine (Pinus sylvestris) stands affected by a colony of grey heron (Ardea cinerea): a case study from northern Poland. Lichenologist 45: 815823.CrossRefGoogle Scholar
Žydelis, R., Gražulevičius, G., Zarankaitė, J., Mečionis, R. & Mačiulis, M. (2002) Expansion of the Cormorant (Phalacrocorax carbo sinensis) population in western Lithuania. Acta Zoologica Lituanica 12: 283287.CrossRefGoogle Scholar