Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T05:49:25.269Z Has data issue: false hasContentIssue false

Effective optoelectronic and photocatalytic response of Eu3+-doped TiO2 nanoscale systems synthesized via a rapid condensation technique

Published online by Cambridge University Press:  22 May 2013

Nibedita Paul
Affiliation:
Department of Physics, Nanoscience and Soft Matter Laboratory, Tezpur University, Tezpur 784 028, Assam, India
Dambarudhar Mohanta*
Affiliation:
Department of Physics, Nanoscience and Soft Matter Laboratory, Tezpur University, Tezpur 784 028, Assam, India; and Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
*
a)Address all correspondence to this author. e-mail: best@tezu.ernet.in, mohanta@seas.harvard.edu
Get access

Abstract

In this work, we report on the optoelectronic and photocatalytic features of europium (Eu3+)-doped TiO2 nanoscale particles synthesized via a sol-gel mediated rapid-condensation technique. X-ray diffraction studies have revealed the mixed phases of the synthesized systems. In particular, a mixture of anatase, brookite, and rutile phases was found to coexist beyond a sintering temperature of 600 °C while a pure anatase phase was witnessed below 500 °C. The photoluminescence spectra of ∼7 nm sized anatase TiO2 nanoparticles have exhibited different intra 4f (Eu3+ ion related) transitions with the most intense red emission (5D07F2) peak located at ∼613 nm. The emissions due to color centers and oxygen vacancies of TiO2 were also evident in the PL spectra. The Brunauer-Emmett-Teller surface area analysis has revealed a significant increment of surface area and pore volume owing to the enhanced interfacial region introduced by point defects and dislocations due to Eu doping. The photocatalytic activity of the Eu3+ doped TiO2 nanoscale system was found to be ∼12% stronger than its un-doped counterpart, as assessed from the degradation of methyl orange (MO) solution under UV light irradiation. The percentage of degradation was found to be strongly dependent on the duration of the UV exposure and Eu doping concentration. As an efficient photosensitive candidate, rare earth sensitized TiO2 systems would bring new insights while displaying both optoelectronic and photocatalytic characteristics through use of the localized states present in the band gap of the host.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Braun, J.H., Baidins, A., and Marganski, R.E.: TiO2 pigment technology: A review. Prog. Org. Coat. 20, 105 (1992).CrossRefGoogle Scholar
Pfaff, G. and Reynders, P.: Angle-dependent optical effects deriving from submicron structures of films and pigments. Chem. Rev. 99, 1963 (1999).CrossRefGoogle ScholarPubMed
Yuan, S.A., Chen, W.H., and Hu, S.S.: Fabrication of TiO2 nanoparticles/surfactant polymer complex film on glassy carbon electrode and its application to sensing trace dopamine. Mater. Sci. Eng., C 25(4), 479 (2005).CrossRefGoogle Scholar
Lin, C.F., Wu, C.H., and Onn, Z.N.: Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 systems. J. Hazard. Mater. 154, 1033 (2008).CrossRefGoogle ScholarPubMed
Chatterjee, D. and Mahata, A.: Demineralization of organic pollutants on the dye modified TiO2 semiconductor particulate system using visible light. Appl. Catal., B 33(2), 119 (2001).CrossRefGoogle Scholar
Yu, H.G., Lee, S.C., Yu, J.G., and Ao, C.H.: Photocatalytic activity of dispersed TiO2 particles deposited on glass fibers. J. Mol. Catal. A: Chem. 246, 206 (2006).CrossRefGoogle Scholar
Yin, J., Xiang, L., and Zhao, X.: Monodisperse spherical mesoporous Eu-doped TiO2 phosphor particles and the luminescence properties. Appl. Phys. Lett. 90, 113112 (2007).CrossRefGoogle Scholar
Conde-Gallardo, A., Garcia-Rocha, M., Hernandez-Calderon, I., and Palomino-Merino, R.: Photoluminescence properties of the Eu3+ activator ion in the TiO2 host matrix. Appl. Phys. Lett. 78, 3436 (2001).CrossRefGoogle Scholar
Li, J.G., Wang, X., Watanabe, K., and Ishigaki, T.: Phase structure and luminescence properties of Eu3+-doped TiO2 nanocrystals synthesized by Ar/O2 radio frequency thermal plasma oxidation of liquid precursor mists. J. Phys. Chem. B 110(3), 1121 (2006).CrossRefGoogle ScholarPubMed
Hu, L.Y., Song, H.W., Pan, G.H., Yan, B., Qin, R.F., Dai, Q.L., Fan, L.B., Li, S.W., and Bai, X.: Photoluminescence properties of samarium-doped TiO2 semiconductor nanocrystalline powders. J. Lumin. 127(2), 371 (2007).CrossRefGoogle Scholar
Wilke, K. and Breuer, H.D.: The influence of transition metal doping on the physical and photocatalytic properties of titania. J. Photochem. Photobiol., A 121(1), 49 (1999).CrossRefGoogle Scholar
Frindell, K.L., Bartl, M.H., Popitsch, A., and Stucky, G.D.: Sensitized luminescence of trivalent europium by three-dimensionally arranged anatase nanocrystals in mesostructured titania thin films. Angew. Chem. Int. Ed. 114(6), 1001 (2002).3.0.CO;2-8>CrossRefGoogle Scholar
Yang, P., Lu, C., Hua, N., and Du, Y.: Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis. Mater. Lett. 57, 794 (2002).CrossRefGoogle Scholar
Xiaohong, W., Wei, Q., Xianbo, D., Yang, W., Huiling, L., and Zhaohua, J.: Photocatalytic activity of Eu-doped TiO2 ceramic films prepared by microplasma oxidation method. J. Phys. Chem. Solids 68, 2387 (2007).CrossRefGoogle Scholar
Xiao, Q., Si, Z., Yu, Z., and Qiu, G.: Characterization and photocatalytic activity of Sm3+-doped TiO2 nanocrystalline prepared by low temperature combustion method. J. Alloys Compd. 450(1–2), 426 (2008).CrossRefGoogle Scholar
Ranjit, K.T., Willner, I., Bossmann, S.H., and Braun, A.M.: Lanthanide oxide-doped titanium dioxide photocatalysts: Novel photocatalysts for the enhanced degradation of p- chlorophenoxyacetic acid. Environ. Sci. Technol. 35, 1544 (2001).CrossRefGoogle ScholarPubMed
Hurum, D.C., Agrios, A.G., Gray, K.A., Rajh, T., and Thurnauer, M.C.: Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 107(19), 4545 (2003).CrossRefGoogle Scholar
Ohno, T., Tokieda, K., Higashida, S., and Matsumura, M.: Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Appl. Catal., A 244(2), 383 (2003).CrossRefGoogle Scholar
Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53 (2003).CrossRefGoogle Scholar
Liao, Y., Que, W., Jia, Q., He, Y., Zhang, J., and Zhong, P.: Controllable synthesis of brookite/anatase/rutile TiO2 nanocomposites and single-crystalline rutile nanorods array. J. Mater. Chem. 22(16), 7937 (2012).CrossRefGoogle Scholar
Choudhury, B., Borah, B., and Choudhury, A.: Extending photocatalytic activity of TiO2 nanoparticles to visible region of illumination by doping of cerium. Photochem Photobiol., 88(2), 257 (2012).CrossRefGoogle ScholarPubMed
Jaćimović, J., Vâju, C., Gaál, R., Magrez, A., Berger, H., and Forró, L.: High-pressure study of anatase TiO2. Materials 3(3), 1509 (2010).CrossRefGoogle Scholar
Coronado, D.R., Gattorno, G.R., Espinosa-Pesqueira, M.E., Cab, C., de Coss, R., and Oskam, G.: Phase-pure TiO2 nanoparticles: Anatase, brookite and rutile. Nanotechnology 19, 145605 (2008).CrossRefGoogle Scholar
Zhang, H. and Banfield, J.F.: Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation. J. Mater. Res. 15(2), 437 (2000).CrossRefGoogle Scholar
Qadri, S.B., Skelton, E.F., Hsu, D., Dinsmore, A.D., Yang, J., Gray, H.F., and Ratna, B.R.: Size- induced transition-temperature reduction in nanoparticles of ZnS. Phys. Rev. B 60(13), 9191 (1999).CrossRefGoogle Scholar
Zhang, H. and Banfield, J.F.: Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2. J. Phys. Chem. B 104, 3481 (2000).CrossRefGoogle Scholar
Bakardjieva, S., Stengl, V., Szatmary, L., Subrt, J., Lukac, J., Murafa, N., Niznansky, D., Cizek, K., Jirkovsky, J., and Petrova, N.: Transformation of brookite-type TiO2 nanocrystals to rutile: Correlation between microstructure and photoactivity. J. Mater. Chem. 16, 1709 (2006).CrossRefGoogle Scholar
Paul, N., Patowary, M., Pegu, B., and Mohanta, D.: Physical properties of nanoscale TiO2 related to Ag-doping and photochromic behavior. Nanosci. Nanotechnol. Lett. 5, 452 (2013).CrossRefGoogle Scholar
Pal, M., Pal, U., Jiménez, J.M.G.Y., and Pérez-Rodríguez, F.: Effects of crystallization and dopant concentration on the emission behavior of TiO2: Eu nanophosphors. Nanoscale Res. Lett. 7(1), 1 (2012).CrossRefGoogle ScholarPubMed
Tseng, Y.H., Kuo, C-S., Huang, C-H., Li, Y-Y., Chou, P-W., Cheng, C-L., and Wong, M-S.: Visible-light-responsive nano-TiO2 with mixed crystal lattice and its photocatalytic activity. Nanotechnology 17, 2490 (2006).CrossRefGoogle ScholarPubMed
Murphy, A.B.: Band-gap determination from diffuse reflectance measurements of semiconductor films and application to photoelectrochemical water-splitting. Sol. Energy Mater. Sol. Cells 91, 1326 (2007).CrossRefGoogle Scholar
Singh, S.P. and Karmakar, B.: Photoluminescence enhancement of Eu3+ by energy transfer from Bi2+to Eu3+ in bismuth glass nanocomposites. RSC Advances 1, 751 (2011).CrossRefGoogle Scholar
Lei, Y., Zhang, L.D., Meng, G.W., Li, G.H., Zhang, X.Y., Liang, C.H., Chen, W., and Wang, S.X.: Preparation and photoluminescence of highly orderedTiO2 nanowire arrays. Appl. Phys. Lett. 78(8), 1125 (2001).CrossRefGoogle Scholar
Li, D., Haneda, H., Labhsetwar, N.K., Hishita, S., and Ohashi, N.: Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies. Chem. Phys. Lett. 401, 579 (2005).CrossRefGoogle Scholar
Yu, J.C., Yu, J., Ho, W., Jiang, Z., and Zhang, L.: Effect of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 14, 3808 (2002).CrossRefGoogle Scholar
Tachikawa, T., Ishigaki, T., Li, J-G., Fujitsuka, M., and Majima, T.: Defect-mediated photoluminescence dynamics of Eu3+ doped TiO2 nanocrystals revealed at the single- particle or single-aggregate level. Angew. Chem. Int. Ed. 47, 5348 (2008).CrossRefGoogle ScholarPubMed
Das, S., Reddy, A.A., Ahmad, S., Nagarajan, R., and Prakash, G.V.: Synthesis and optical characterization of strong red light emitting KLaF4: Eu3+nanophosphors. Chem. Phys. Lett. 508, 117 (2011).CrossRefGoogle Scholar
Zhang, Y., Leung-Yuk Lam, F., Yan, Z.F., and Hu, X.: Review of Kelvin's equation and its modification in characterization of mesoporous materials. Chin. J. Chem. Phys. 19, 102 (2006).CrossRefGoogle Scholar
Dutta, N., Mohanta, D., and Choudhury, A.: Synthesis and pore filling mechanism in anatase TiO2 nanostructured network mediated by PbS molecular adsorption. J. Appl. Phys. 109, 094904 (2011).CrossRefGoogle Scholar
Testino, A., Bellobono, I.R., Buscaglia, V., Canevali, C., D'Arienzo, M., Polizzi, S., Scotti, R., and Morazzoni, F.: Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology: A systematic approach. J. Am. Chem. Soc. 129(12), 3564 (2007).CrossRefGoogle ScholarPubMed
Hoffman, A.J., Carraway, E.R., and Hoffman, M.R.: Photocatalytic production of H2O2 and organic peroxides on quantum-sized semiconductor colloids. Environ. Sci. Technol. 28, 776 (1994).CrossRefGoogle ScholarPubMed
Mahdavi, F., Burton, T.C., and Li, Y.: Photoinduced reduction of nitro compounds on semiconductor particles. J. Org. Chem. 58(3), 744 (1993).CrossRefGoogle Scholar
Li, F.B., Li, X.Z., Hou, M.F., Cheah, K.W., and Choy, W.C.H.: Enhanced photocatalytic activity of Ce3+-TiO2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control. Appl. Catal., A 285, 181 (2005).CrossRefGoogle Scholar
Xu, Y-H., Chen, C., Yang, X-L., Li, X., and Wang, B-F.: Preparation, characterization and photocatalytic activity of the neodymium-doped TiO2 nanotubes. Appl. Surf. Sci. 255, 8624 (2009).CrossRefGoogle Scholar