Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-08T14:51:10.062Z Has data issue: false hasContentIssue false

Multi-paradigm multi-scale modeling of dynamical crack propagation in silicon using the ReaxFF reactive force field

Published online by Cambridge University Press:  26 February 2011

Markus J. Buehler
Affiliation:
mbuehler@MIT.EDU, Massachusetts Institute of Technology, CEE, 77 Mass. Ave Room 1-272, Cambridge, MA, 02139, United States, 626 628 4087, 617 258-6775
Adri C.T. van Duin
Affiliation:
duin@wag.caltech.edu, California Institute of Technology
William A. Goddard III
Affiliation:
wag@wag.caltech.edu, California Institute of Technology
Get access

Abstract

We report a study of dynamic cracking in a silicon single crystal in which the ReaxFF reactive force field is used for ∼3,000 atoms near the crack tip while the other 100,000 atoms of the model system are described with a simple nonreactive force field. The ReaxFF is completely derived from quantum mechanical calculations of simple silicon systems without any empirical parameters. Our results reproduce experimental observations of fracture in silicon including details of crack dynamics for loading in the [110] orientations, such as dynamical instabilities with increasing crack velocity. We also observe formation of secondary microcracks ahead of the moving mother crack. We conclude with a study of Si(bulk)-O2 systems, showing that Si becomes more brittle in oxygen environments, as known from experiment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Deegan, R. D., Chheda, S., Patel, L., Marder, M., Swinney, H. L., Kim, J., Lozanne, A. d., Phys. Rev. E 67 (2003) 066209.Google Scholar
[2] Cramer, T., Wanner, A., Gumbsch, P., Phys. Rev. Lett. 85 (2000) 788791.Google Scholar
[3] Cramer, T., Wanner, A., Gumbsch, P., Phys. Status Solidi A 164 (1997) R5.Google Scholar
[4] Hauch, J. A., Holland, D., Marder, M., Swinney, H. L., Phys. Rev. Lett. 82 (1999) 3823–2826.Google Scholar
[5] Holland, D., Marder, M., Phys. Rev. Lett. 80 (1998) 746.Google Scholar
[6] Abraham, F. F., Broughton, J. Q., Bernstein, N., Kaxiras, E., Computers in Physics 12 (1998) 538546.Google Scholar
[7] Bailey, N. P., Sethna, J. P., Phys. Rev. B 68 (2003) 205204.Google Scholar
[8] Bazant, M. Z., Kaxiras, E., Justo, J. F., Physical Review B-Condensed Matter 56 (1997) 8542.Google Scholar
[9] Swadener, J. G., Baskes, M. I., Nastasi, M., Phys. Rev. Lett. 89 (2002) 085503.Google Scholar
[10] Baskes, M. I., Phys. Rev. B 29 (1984) 64436543.Google Scholar
[11] Baskes, M. I., Journal Of Metals 40 (1988) 123–123.Google Scholar
[12] Finnis, M. W., Sinclair, J. E., Phil. Mag. A 50 (1984) 4555.Google Scholar
[13] Tersoff, J., Phys. Rev. Lett. 61 (1988) 28792883.Google Scholar
[14] Stillinger, F., Weber, T. A., Phys. Rev. B 31 (1985) 52625271.Google Scholar
[15] Duin, A. C. T. v., Dasgupta, S., Lorant, F., Goddard, W. A., J. Phys. Chem. A 105 (2001) 93969409.Google Scholar
[16] Duin, A. C. T. v., Strachan, A., Stewman, S., Zhang, Q., Xu, X., Goddard, W. A., J. Phys. Chem. A 107 (2003) 38033811.Google Scholar
[17] Parker, S. G., Johnson, C. R., Beazley, D., IEEE Computational Science and Engineering 4 (1997) 50599.Google Scholar
[18] Gao, H., J. Mech. Phys. Solids 44 (1996) 14531474.Google Scholar
[19] Buehler, M. J., Abraham, F. F., Gao, H., Nature 426 (2003) 141146.Google Scholar
[20] Buehler, M. J., Gao, H., Accepted for publication in: Nature.Google Scholar
[21] Becke, A. D., J. Chem. Phys. 98 (1993) 56485652.Google Scholar
[22] Abraham, F. F., Walkup, R., Gao, H., Duchaineau, M., Rubia, T. D. d. L., Seager, M., P. Natl. Acad. Sci. USA 99 (2002) 57835787.Google Scholar
[23] Fineberg, J., Gross, S. P., Marder, M., Swinney, H. L., Phys. Rev. Lett. 67 (1991) 457460.Google Scholar
[24] Wu, Y. Q., Xu, Y. B., Phil. Mag. Lett. 78 (1998) 913.Google Scholar
[25] Bouchbinder, E., Kessler, D., Procaccia, I., Phys. Rev. E 70 (2004) 046107.Google Scholar
[26] Buehler, M. J., Gao, H., under submission (2005).Google Scholar