Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T09:27:30.963Z Has data issue: false hasContentIssue false

Interactions between second mode and low-frequency waves in a hypersonic boundary layer

Published online by Cambridge University Press:  12 May 2017

Xi Chen
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, Advanced Aero Engine Collaborative Innovation Center, Peking University, Beijing 100871, PR China
Yiding Zhu
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, Advanced Aero Engine Collaborative Innovation Center, Peking University, Beijing 100871, PR China
Cunbiao Lee*
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, Advanced Aero Engine Collaborative Innovation Center, Peking University, Beijing 100871, PR China
*
Email address for correspondence: cblee@mech.pku.edu.cn

Abstract

The stability of a hypersonic boundary layer on a flared cone was analysed for the same flow conditions as in earlier experiments (Zhang et al., Acta Mech. Sinica, vol. 29, 2013, pp. 48–53; Zhu et al., AIAA J., vol. 54, 2016, pp. 3039–3049). Three instabilities in the flared region, i.e. the first mode, the second mode and the Görtler mode, were identified using linear stability theory (LST). The nonlinear-parabolized stability equations (NPSE) were used in an extensive parametric study of the interactions between the second mode and the single low-frequency mode (the Görtler mode or the first mode). The analysis shows that waves with frequencies below 30 kHz are heavily amplified. These low-frequency disturbances evolve linearly at first and then abruptly transition to parametric resonance. The parametric resonance, which is well described by Floquet theory, can be either a combination resonance (for non-zero frequencies) or a fundamental resonance (for steady waves) of the secondary instability. Moreover, the resonance depends only on the saturated state of the second mode and is insensitive to the initial low-frequency mode profiles and the streamwise curvature, so this resonance is probably observable in boundary layers over straight cones. Analysis of the kinetic energy transfer further shows that the rapid growth of the low-frequency mode is due to the action of the Reynolds stresses. The same mechanism also describes the interactions between a second-mode wave and a pair of low-frequency waves. The only difference is that the fundamental and combination resonances can coexist. Qualitative agreement with the experimental results is achieved.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Salman, A.2002 Nonlinear modal interactions in a compressible boundary layer. PhD thesis, Imperial College London.Google Scholar
Balakumar, P. & Kegerise, M. A.2010 Receptivity of hypersonic boundary layers over straight and flared cones. AIAA Paper 2010-1065.CrossRefGoogle Scholar
Berridge, D. C., Chou, A., Ward, A. C., Steen, L. E., Gilbert, P. L., Juliano, T. J., Schneider, S. P. & Gronvall, J. E.2010 Hypersonic boundary-layer transition experiments in a Mach 6 quiet tunnel. AIAA Paper 2010-1061.Google Scholar
Bertolotti, F. P., Herbert, Th. & Spalart, P. R. 1992 Linear and nonlinear stability of the Blasius boundary layer. J. Fluid Mech. 242, 441474.Google Scholar
Boiko, A. V., Ivanov, A. V., Kachanov, Y. S. & Mischenko, D. A. 2010 Steady and unsteady Görtler boundary-layer instability on concave wall. Eur. J. Mech. (B/Fluids) 29, 6183.Google Scholar
Bountin, D., Shiplyuk, A. & Maslov, A. 2008 Evolution of nonlinear processes in a hypersonic boundary layer on a sharp cone. J. Fluid Mech. 611, 427442.Google Scholar
Chang, C.-L. & Malik, M. R.1993 Linear and nonlinear PSE for compressible boundary layers. Tech. Rep. 191537. NASA Contractor Report.Google Scholar
Chang, C.-L. & Malik, M. R. 1994 Oblique-mode breakdown and secondary instability in supersonic boundary layers. J. Fluid Mech. 273, 323360.Google Scholar
Chokani, N. 1999 Nonlinear spectral dynamics of hypersonic laminar boundary layer flow. Phys. Fluids 11 (12), 38463851.Google Scholar
Chokani, N. 2005 Nonlinear evolution of Mack modes in a hypersonic boundary layer. Phys. Fluids 17, 014102.Google Scholar
Choudhari, M., Chang, C.-L. & Jiang, L. 2005 Towards transition modelling for supersonic laminar flow control based on spanwise periodic roughness elements. Phil. Trans. R. Soc. Lond. A 363, 10791096.Google Scholar
Craik, A. D. 1971 Non-linear resonant instability in boundary layers. J. Fluid Mech. 50, 393413.CrossRefGoogle Scholar
Dong, M. & Luo, J. 2007 Mechanism of transition in a hypersonic sharp cone boundary layer with zero angle of attack. Appl. Math. Mech. – Engl. Edn 28, 10191028.Google Scholar
Fasel, H. F., Sivasubramanian, J. & Laible, A. 2015 Numerical investigation of transition in a flared cone boundary layer at Mach 6. In Procedia IUTAM, vol. 14, pp. 2635. Elsevier.Google Scholar
Franko, K. J. & Lele, S. K. 2013 Breakdown mechanisms and heat transfer overshoot in hypersonic zero pressure gradient boundary layers. J. Fluid Mech. 730, 491532.Google Scholar
Gasperas, G.1987 The stability of the compressible boundary layer on a sharp cone at zero angle of attack. AIAA Paper 87-0494.Google Scholar
Hajj, M. R., Miksad, R. W. & Powers, E. J. 1993 Fundamental-subharmonic interaction: effect of phase relation. J. Fluid Mech. 256, 403426.Google Scholar
Herbert, Th. 1988 Secondary instability of boundary layers. Annu. Rev. Fluid Mech. 20, 487526.Google Scholar
Hofferth, J. W., Humble, R. A., Floryan, D. C. & Saric, W. S.2013 High-bandwidth optical measurements of the second-mode instability in a Mach 6 quiet tunnel. AIAA Paper 2013-0378.Google Scholar
Horvath, T. J., Berry, S. A., Hollis, B. R., Chang, C.-L. & Singer, B. A.2002 Boundary layer transition on slender cones in conventional and low disturbance Mach 6 wind tunnels. AIAA Paper 2002-2743.Google Scholar
Husmeier, F. & Fasel, H. F.2007 Numerical investigations of hypersonic boundary layer transition for circular cones. AIAA Paper 2007-3843.CrossRefGoogle Scholar
Kachanov, Y. S. 1994 Physical mechanisms of laminar-boundary-layer transition. Annu. Rev. Fluid Mech. 26, 411482.Google Scholar
Kimmel, R. L. & Kendall, J. M.1991 Nonlinear disturbances in a hypersonic laminar boundary layer. AIAA Paper 91-0320.Google Scholar
Lachwicz, J. T., Chokani, N. & Wikinson, S. P. 1996 Boundary-layer stability measurements in a hypersonic quiet tunnel. AIAA J. 34, 24962500.Google Scholar
Laible, A. C. & Fasel, H. F.2011 Numerical investigation of hypersonic transition for a flared and a straight cone at Mach 6. AIAA Paper 2011-3565.Google Scholar
Li, F., Choudhari, M., Chang, C.-L. & White, J.2010a Analysis of instabilities in non-axisymmetric hypersonic boundary layers over cones AIAA Paper 2010-4643.CrossRefGoogle Scholar
Li, F., Choudhari, M., Chang, C.-L., Wu, M. & Greene, P.2010b Development and breakdown of Görtler vortices in high speed boundary layers. AIAA Paper 2010-0705.Google Scholar
Li, X., Fu, D. & Ma, Y. 2010c Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack. Phys. Fluids 22, 025105.Google Scholar
Mack, L. M.1984 Boundary-layer linear stability theory. AGARD Rep. 709.Google Scholar
Maestrello, L., Bayliss, A. & Krishnan, R. 1991 On the interaction between first and secondmode waves in a supersonic boundary layer. Phys. Fluids A 3 (12), 30143020.Google Scholar
Malik, M. R. 1990 Numerical methods for hypersonic boundary layer stability. J. Comput. Phys. 86, 376413.Google Scholar
Malik, M. R. & Spall, R. E. 1991 On the stability of compressible flow past axisymmetric bodies. J. Fluid Mech. 228, 443463.Google Scholar
Munoz, F., Heitmann, D. & Radespiel, R. 2014 Instability modes in boundary layers of an inclined cone at Mach 6. J. Spacecr. Rockets 51, 442454.Google Scholar
Nakamura, S. 1994 Iterative finite difference schemes for similar and nonsimilar boundary layer equations. Adv. Engng Softw. 21, 123131.Google Scholar
Ng, L. & Erlebacher, G. 1992 Secondary instabilities in compressible boundary layers. Phys. Fluids A 4 (4), 710726.Google Scholar
Orszag, S. A. & Patera, A. T. 1983 Secondary instability of wall-bounded shear flows. J. Fluid Mech. 128, 347385.Google Scholar
Perez, E., Kocian, T. S., Kuehl, J. J. & Reed, H. L.2012 Stability of hypersonic compression cones AIAA Paper 2012-2963.Google Scholar
Pruett, C. D. & Chang, C.-L. 1998 Direct numerical simulation of hypersonic boundary-layer flow on a flared cone. Theor. Comput. Fluid Dyn. 11, 4067.Google Scholar
Ren, J. & Fu, S. 2015 Secondary instabilities of Görtler vortices in high-speed boundary layer flows. J. Fluid Mech. 781, 388421.CrossRefGoogle Scholar
Ren, J., Fu, S. & Hanifi, A. 2016 Stabilization of the hypersonic boundary layer by finite-amplitude streaks. Phys. Fluids 28, 024110.Google Scholar
Shiplyuk, A. N., Bountin, D. A., Maslov, A. A. & Chokani, N.2003 Nonlinear interactions of second mode instability with natural and artificial disturbances. AIAA Paper 2003-787.Google Scholar
Sivasubramanian, J. & Fasel, H. F. 2014 Numerical investigation of the development of three-dimensional wavepackets in a sharp cone boundary layer at Mach 6. J. Fluid Mech. 756, 600649.CrossRefGoogle Scholar
Sivasubramanian, J. & Fasel, H. F. 2015 Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6: fundamental breakdown. J. Fluid Mech. 768, 175218.Google Scholar
Sivasubramanian, J. & Fasel, H. F.2016 Direct numerical simulation of laminar-turbulent transition in a flared cone boundary layer at Mach 6. AIAA Paper 2016-0846.CrossRefGoogle Scholar
Whang, C. W. & Zhong, X.2000 Nonlinear interactions of Görtler and second shear modes in hypersonic boundary layers. AIAA paper 2000-0536.Google Scholar
White, F. M. 2006 Viscous Fluid Flow. McGraw-Hill.Google Scholar
Wu, X. & Stewart, P. 1996 Interaction of phase-locked modes: a new mechanism for the rapid growth of three-dimensional disturbances. J. Fluid Mech. 316, 335372.Google Scholar
Wu, X., Stewart, P. & Cowley, S. J. 2007 On the catalytic role of the phase-locked interaction of Tollmien–Schlichting waves in boundary-layer transition. J. Fluid Mech. 590, 265294.Google Scholar
Wu, X., Zhao, D. & Luo, J. 2011 Excitation of steady and unsteady Görtler vortices by free-stream vortical disturbances. J. Fluid Mech. 682, 66100.CrossRefGoogle Scholar
Yu, M. & Luo, J. 2014 Nonlinear interaction mechanisms of disturbances in supersonic flat-plate boundary layers. Sci. China Phys. Mech. Astron. 57 (11), 21412151.CrossRefGoogle Scholar
Zhang, C. H., Tang, Q. & Lee, C. B. 2013 Hypersonic boundary-layer transition on a flared cone. Acta Mech. Sinica 29, 4853.Google Scholar
Zhang, C. H., Zhu, Y. D., Chen, X., Yuan, H., Wu, J. Z., Chen, S. Y., Lee, C. B. & Gad-el-Hak, M. 2015 Transition in hypersonic boundary layers. AIP Adv. 5, 107137.Google Scholar
Zhang, Y. & Su, C. 2015 Self-consistent parabolized stability equation (PSE) method for compressible boundary layer. Appl. Math. Mech. – Engl. Edn 36, 835846.Google Scholar
Zhong, X.2004 Receptivity of Mach 6 flow over a flared cone to freestream disturbance. AIAA Paper 2004-253.Google Scholar
Zhu, Y. D., Zhang, C. H., Chen, X., Yuan, H., Wu, J. Z., Chen, S. Y., Lee, C. B. & el Hak, M. G. 2016 Transition in hypersonic boundary layers: role of dilatational waves. AIAA J. 54, 30393049.Google Scholar