Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T12:44:29.841Z Has data issue: false hasContentIssue false

Sampling methane in basalt on Earth and Mars

Published online by Cambridge University Press:  02 January 2013

Sean McMahon*
Affiliation:
School of Geosciences, University of Aberdeen, Aberdeen AB24 3UE, UK
John Parnell
Affiliation:
School of Geosciences, University of Aberdeen, Aberdeen AB24 3UE, UK
Nigel J.F. Blamey
Affiliation:
Department of Earth and Environmental Science, New Mexico Tech, Socorro, NM 87801, USA

Abstract

If confirmed, the extremely low concentrations of methane (CH4) detected in the Martian atmosphere may represent reservoirs and emission processes that would normally be considered negligible on Earth. One such process is the release of ancient volatiles from fluid inclusions and interstitial sites in rocks and minerals during erosion or geothermal activity. Using a highly sensitive rock-crushing and mass-spectrometry technique previously shown to detect CH4 in serpentinites and hydrothermal mineral deposits, we have demonstrated that CH4 and other ancient volatiles can be recovered from basalt, the dominant rock type on the Martian surface. Basalt samples from a wide range of ages and geological systems were tested, all of which released CH4 when crushed. Oxidative weathering was associated with lower quantities of CH4. Otherwise, CH4 recoverability showed no relationship with age or geological context. Mineral veins, cross-cutting one locality were found to share the volatile composition of the basalt. In general, the results suggest that CH4-release from ancient basalts could be a significant process on Mars, which could be further investigated by Martian rovers using a similar rock-crushing and mass spectrometry technique in situ.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, F.W. & Dunham, K.C. (1966). The Geology of Northern Skye. Memoirs of the Geological Survey (Geological Survey of Scotland) HMSO, Edinburgh.Google Scholar
Arai, S., Ishimaru, S. & Mizukami, T. (2012). Hydrocarbon micro-inclusions in olivine in high-P titanoclinohumite-bearing dunites: hydrocarbon activity in a subduction zone and Ti mobility. Geophys. Res. Abstr. 14, EGU2012EGU4015.Google Scholar
Blamey, N.J.F. (2012). J. Geochem. Explor, 116117, 17–27.Google Scholar
Blamey, N.J.F., Parnell, J. & Longerich, H.P. (2012). Understanding detection limits in fluid inclusion analysis using an incremental crush fast scan method for planetary science. In Proc. Lunar and Planetary Science Conf. XLIII, abstract 1035.Google Scholar
Bluck, B.J. (1992). Pinbain block. In Geological Excursions Around Glasgow and Girvan, ed. Lawson, J.D. & Weedon, D., pp. 319338. Geological Society, Glasgow.Google Scholar
Bornhorst, T.J. & Rose, W.I. Self-guided geological field trip to the Keweenaw Peninsula, Michigan. In Institute on Lake Superior Geology Proceedings 40, part 2. ILSG, Houghton.Google Scholar
Bridges, J.C. & Warren, P.H. (2006). J. Geol. Soc. 163, 229251.Google Scholar
Browne, M.A.E. & Woodhall, D.G. (1999). Geology of the Kirkcaldy Sheet – a brief explanation of the geological map. Sheet Explanation of the British Geological Survey 1:50 000 Sheet 40E Kirkcaldy (Scotland).Google Scholar
Carr, R.H., Grady, M.M., Wright, I.P. & Pillinger, C.T. (1985). Nature 314, 248250.Google Scholar
Changela, H.G. & Bridges, J.C. (2011). Meteorit. Planet. Sci. 45, 18471867.Google Scholar
Charlou, J., Donval, J., Fouquet, Y., Jean-Baptiste, P. & Holm, N. (2002). Chem. Geol. 191, 345359.CrossRefGoogle Scholar
Chassefière, E. & Leblanc, F. (2011). Planet. Space Sci. 59, 207217.CrossRefGoogle Scholar
Craig, L.E. (1983). Trans. R. Soc. Edinburgh Earth Sci. 74, 183191.Google Scholar
Dentener, R. et al. (2001). Atmospheric chemistry and greenhouse gases. In Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, ed. Houghton, J.T. et al. , 881 pp. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
Ehlmann, B.L., Mustard, J.F. & Murchie, S.L. (2010). Geophys. Res. Letts. 37, L06201.CrossRefGoogle Scholar
Eyles, V.I. (1952). The composition and origin of the Antrim laterites and bauxites. Memoirs of the Geological Survey (Geological Survey of Northern Ireland). HMSO, Belfast.Google Scholar
Fisk, M.R. & Giovannoni, S.J. (1999). J. Geophys. Res. 104, 1180511815.Google Scholar
Fonti, S. & Marzo, G.A. (2010). Astron. Astrophy. 512, A51.Google Scholar
Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N. & Giuranna, M. (2004). Science 306, 17581761.Google Scholar
Geminale, A., Formisano, V. & Giuranna, M. (2008). Planet. Space Sci. 56, 11941203.Google Scholar
Giggenbach, W.F. (1987). Appl. Geochem. 2, 143161.Google Scholar
Giggenbach, W.F. (1997). The origin and evolution of fluids in magmatic-hydrothermal systems. In Geochemistry of Hydrothermal Ore Deposits, 3rd edn, ed. Barnes, H.L., 972 pp. John Wiley & Sons Inc., New York.Google Scholar
Gough, R.V., Tolbert, M.A., McKay, C.P. & Toon, O.B. (2010). Icarus 207, 165174.Google Scholar
Gower, P. (1977). Scottish J. Geol. 13, 125133.Google Scholar
Grady, M.M., Verchovsky, A.B. & Wright, I.P. (2004). Int. J. Astrobiol. 3, 117124.Google Scholar
Halevy, I., Fischer, W.W. & Eiler, J.M. (2011). Proc. Natl. Acad. Sci. U.S.A. 41, 1689516899.Google Scholar
Hellevang, H. (2008). Int. J. Astrobiol. 7, 157167.Google Scholar
Hirschmann, M.M. & Withers, A.C. (2008). Earth Planet. Sci. Lett. 270, 147155.Google Scholar
Horita, J. & Berndt, M.E. (1999). Science 285, 10551057.Google Scholar
Kawai, T. et al. (2007). Precambrian Res. 153, 1128.Google Scholar
Kelley, D.S. (1996). J. Geophys. Res. 101, 29432962.Google Scholar
Kelley, D.S. et al. (2005). Science 307, 14281434.Google Scholar
Knauth, L.P., Brilli, M. & Klonowski, S. (2003). Geochim. Cosmochim. Acta 67, 185195.Google Scholar
Lefèvre, F. & Forget, F. (2009). Nature 460, 720723.Google Scholar
Lowenstern, J.B. (2001). Miner. Deposita 36, 490502.CrossRefGoogle Scholar
Lyle, P. & Preston, J. (1993). J. Geol. Soc. 150, 109120.CrossRefGoogle Scholar
Lyons, J.R., Manning, C. & Nimmo, F. (2005). Geophys. Res. Lett. 32, L131201.Google Scholar
McGrail, B.P., Schaef, H.T., Ho, A.M., Chien, Y-J., Dooley, J.J. & Davidson, C.L. (2006). J. Geophys. Res. 111, doi:10.1029/2005JB004169, 2006Google Scholar
McMahon, S., Parnell, J., Burchell, M. & Blamey, N.J.F. (2012a). Methane retention by rocks following simulated meteorite impacts: implications for mars. In Proc. Lunar and Planetary Science Conf. XLIII, abstract 1040.Google Scholar
McMahon, S., Parnell, J. & Blamey, N.J.F. (2012b). Int. J. Astrobiol. 11, 163167.Google Scholar
McSween, H.Y. Jr., Taylor, G.J. & Wyatt, M.B. (2009). Science 324, 736739.Google Scholar
Michalski, J.R. & Niles, P.B. (2010). Nature Geosci. 3, 751755.Google Scholar
Moore, J.N., Norman, D.I. & Kennedy, B.M. (2001). Chem. Geol. 173, 330.Google Scholar
Mumma, M.J., Villanueva, G.L., Novak, R.E., Hewagama, T., Bonev, B.P., DiSanti, M.A., Mandell, A.M. & Smith, M.D. (2009). Science 323, 10411045.CrossRefGoogle Scholar
Neubeck, A., Duc, N.T., Bastviken, D., Crill, P. & Holm, N.G. (2011). Geochem. Trans. 12, 6.Google Scholar
Niles, P.B., Boynton, W.V., Hoffman, J.H., Ming, D.W. & Hamara, D. (2010). Science 329, 13341337.Google Scholar
Norman, D.I. & Blamey, N.J.F. (2001). Quantitative analysis of fluid inclusion volatiles by a two quadrupole mass spectrometer system. In ECROFI (European Current Research on Fluid Inclusions) XVI, pp. 341344. Elsevier, Amsterdam.Google Scholar
Norman, D.I. & Moore, J.N. (1997). Gaseous species in fluid inclusions: a fluid tracer and indicator of fluid processes. In ECROFI (European Current Research on Fluid Inclusions) XIV, pp. 243244. CNRS-CREGU, Vandoeuvre-lès-Nancy.Google Scholar
Oelkers, E.H., Gislason, S.R. & Matter, J. (2008). Elements 4, 333337.CrossRefGoogle Scholar
Ogenhall, E. (2007). Geol. Forenics Forh. 129, 211226.Google Scholar
Oze, C. & Sharma, M. (2005). Geophys. Res. Lett. 32, L10203.Google Scholar
Parnell, J., Boyce, A.J. & Blamey, N.J.F. (2010). Int. J. Astrobiol. 9, 193200.Google Scholar
Parry, W.T. & Blamey, N.J.F. (2010). Chem. Geol. 278, 105119.Google Scholar
Polat, A., Kerrich, R. & Wyman, D. (1998). Tectonophysics 289, 295326.Google Scholar
Sachan, H.K., Mukherjee, B.K. & Bodnar, R.J. (2007). Earth Planet. Sci. Lett. 257, 4759.CrossRefGoogle Scholar
Schaef, H.T., McGrail, B.P. & Owen, A.T. (2009). Energy Procedia 1, 48994906.CrossRefGoogle Scholar
Schaef, H.T., McGrail, B.P. & Owen, A.T. (2010). Int. J. Greenhouse Gas Control 4, 249261.CrossRefGoogle Scholar
Schulte, W., Widani, C., Hofmann, P., Bönke, T., Re, E. & Baglioni, P. (2008). Design and breadboarding of the sample preparation and distribution system of the ExoMars mission. In Proc. Ninth International Symposium on Artificial Intelligence, Robotics and Automation in Space. ESA.Google Scholar
Sleep, N., Meibom, A., Fridriksson, Th., Coleman, R.G. & Bird, D.K. (2004). Proc. Nat. Acad. Sci. U.S.A. 101, 1281812823.CrossRefGoogle Scholar
Sleep, N., Bird, D.K. & Pope, E. (2012). Annu. Rev. Earth Planet. Sci. 40, 277300.Google Scholar
Sleep, N.H., Bird, D.K. & Pope, E.C. (2011). Phil. Trans. Royal Soc. B: Biol. Sci. 366, 28572869.Google Scholar
Steele, A. et al. (2012). Science 337, 212215.Google Scholar
Stefánsson, A. & Arnórsson, S. (2002). Chem. Geol. 190, 251271.CrossRefGoogle Scholar
Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., Hirayama, H., Nakagawa, S., Nunoura, T. & Horikoshi, K. (2008). Proc. Natl. Acad. Sci. U.S.A. 105, 1094910954.Google Scholar
Thomas, C.W. (1999). Garron point to slug head. In Caledonian Igneous Rocks of Great Britain, ed. Stephenson, D., Bevins, R.E., Millward, D., Highton, A.J., Parsons, I., Stone, P. & Wadsworth, W.J., 648 pp. Geological Conservation Review Series, No. 17, Joint Nature Conservation Committee, Peterborough.Google Scholar
Travis, B.J., Rosenberg, N.D. & Cuzzi, J.N. (2003). J. Geophys. Res 108, 80408054.Google Scholar
Welhan, J.A. (1988). Can. J. Earth Sci. 25, 3848.Google Scholar
Zahnle, K., Freedman, R.S. & Catling, D.C. (2011). Icarus 212, 493503.Google Scholar