Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-07T03:48:09.727Z Has data issue: false hasContentIssue false

Organometallic Chemical Vapor Deposition of Gaas Using Novel Organometallic Precursors

Published online by Cambridge University Press:  25 February 2011

R. A. Jones
Affiliation:
Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712
A. H. Cowley
Affiliation:
Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712
B. L. Benac
Affiliation:
Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712
K. B. Kidd
Affiliation:
Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712
J. G. Ekerdt
Affiliation:
Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712
J. E. Miller
Affiliation:
Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712
Get access

Abstract

The goals of the research are the design and synthesis of a new class of precursor compounds for III/V compound semiconductor materials, growth of films with these precursors and developoment of an understanding of the relationships between precursor structure, film growth reactions and film properties. Conventional OMCVD of III/V compound materials has a number of inherent safety and processing problems associated with the group III alkyl and group V hydride sources. Our approach to these problems is the synthesis of a single precursor with a fixed III:V stoichiometry and a direct two center, two electron sigma III V bond., These, compounds have the general formula,[R2M(R 2 E)] 2 and R2M(R 2 E) 2M R2 (MM = Al, Ga, In; E=P, As; R, R = alkyl, aryl). The III V bond in these compounds is stronger than the other bonds and the minium deposition temperature can be controlled by employing subsituents that undergo facile hydrocarbon elimination.

A typical example is the use of [Me 2Ga(µ t Bu 2 As)] 2 as the single source for GaAs films. The organometallic precursor is a solid crystalline powder which is maintained at 130°C to generate enough vapor for OMCVD. Typical film growth conditions involve the use of H2 or He as the carrier gas, substrate temperatures of 500 to 700°C, and a total system pressure of 0.0002 Torr. GaAs(100), Si(100) (As doped 30 off toward (011) and quartz have been used as substrates. Film composition has been established with XPS. The Ga 3d, As 3d, and C ls signals at 18.8, 40.9, and 284.6 eV, respectively, reveal the films to be 1:1 Ga:As and void of carbon. The carbon levels are less than 1000 ppm. X ray diffraction and SEM results suggest polycrystalline GaAs on quartz and epitaxial GaAs on GaAs(100) and Si(100). (2 K) photoluminescence measurements on GaAs, grown on semi insulating GaAs(100) and Si doped GaAs(0 100) at 570 C. produce PL signals indicating that crystalline domains are present, the measurements indicate degeneratively n doped material and show that good Ga:As ratios and low levels (ca. 1 ppm) of impurities are present. Growth rates:∼ 1.0 mm/hour.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakanisi, T. J. Cryst. Growth. 1984, 68, 282.CrossRefGoogle Scholar
2. Reep, D. H.; Ghandi, S. K. J. Electrochem. Soc.; Solid State Sci. and Tech. 1983, 103, 675.Google Scholar
3. Nishizawa, J.; Kurabayashi, T. J. Electrochem. Soc. Solid State Sci. and Tech. 1983, 103, 413.Google Scholar
4. Bediar, S. M.; Tischler, M. A.; Katsuyama, T. Appl. Phys. Lett. 1986, 48, 30.Google Scholar
5. Atsutoshi, D.; Yoshinobu, A.; Namba, S. Appl. Phys. Lett, 1986, 49, 785.Google Scholar
6. Morris, B. J. Appl. Phys. Lett. 1986, 48,867.Google Scholar
7. Yoshidia, M.; Watanaba, H.; Uesugi, F. J. Electrochem. Soc.: Solid State Sci. Tech. 1985, 132, 676.Google Scholar
8. Schlyer, D. J.; Ring, M.A. J. Electrochem. Soc.; Solid State Sci. Tech. 1977, 124, 569.Google Scholar
9. Leys, M. R.; Veenvliet, H. J. Cryst. Growth 1981, 55, 145 Google Scholar
10. Stringfellow, G. B. J. Cryst. Growth 1983, 62, 225.Google Scholar
11. Haigh, J.; O'Brein, S. J. Cryst. Growth 1984, 67, 75.Google Scholar
12. Koppitz, M.; Vestavik, O.; Pletchen, W.; Mircea, A.; Heyen, M.; Richter, W. J. Cryst. Growth 1984, 68, 136.CrossRefGoogle Scholar
13. Stringfellow, G. B. J. Cryst. Growth 1984, 70, 133.Google Scholar
14. Seki, H.; Koukitu, A. J Cryst. Growth 1986, 74, 172.Google Scholar
15. Koukitu, A.; Suzuki, T.; Seki, H. J. Cryst. Growth 1986, 74, 181.CrossRefGoogle Scholar
16. Kasai, K.; Komeno, J.; Takikawa, M.; Nakai, K.; Ozeki, M. I.. Cryst.Growth 1986, 74, 659.Google Scholar
17. Stringfellow, G. B. J. Cryst. Growth 1986, 75, 91.Google Scholar
18. Larsen, C. A.; Stringfellow, G. B. J Cryst. Growth 1986, 74, 181.Google Scholar
19. Arens, G.; Heinecke, H.; Putz, N.; Luth, H.; Balk, P. J. Cryst. Growth 1986, 76, 302.Google Scholar
20. Huelsman, A. D.; Reif, R.; Fonstad, C. G. Appl. Phys. Lett. 1987, 50, 206.CrossRefGoogle Scholar
21. Butler, J. E.; Bottaka, N.; Sillmon, R. S.; Gaskill, D. K. J Cryst. Growth, 1986, 22, 163.Google Scholar
22. Monteil, Y.; Berthet, M. P.; Favre, R.; Hariss, A.; Bouix, J.; Vaille, M.; Gibart, P. J. Cryst. Growth 1986, 77, 172.Google Scholar
23. DenBaars, S. P.; Maa, B. Y.; Dapkus, P. D.; Danner, A. D.; Lee, H. C. J Cryst. Growth 1986, 77, 188.Google Scholar
24. Chen, K.; Mortazvi, A. R. J. Cryst. Growth 1986, 77, 199.Google Scholar
25. Heinecke, H.; Brauers, A.; Luth, H.; Balk, P. J. Cryst. Growth 1986, 77, 241.CrossRefGoogle Scholar
26. Akiyama, M.; Kawarada, Y.; Ueda, T.; Nishi, S.; Kaminishi, K. J. Cryst. Growth 1986, 77, 490.Google Scholar
27. Manasevit, H. M. Appl. Phys. Letters, 1968, 12, 156.Google Scholar
28. Makita, Y.; Nomura, T.; Yokota, M.; Matsumori;, T.; Izumi, T.; Takeuchi, T.; Kudo, K. Appl. Phys. Lett. 1985, 47, 623.CrossRefGoogle Scholar
29. Balk, P.; Heinecke, H. in “Physical Problems in Microelectronics” Ed Kassabov, J. (World Sci. Publ.) P.190.Google Scholar
30. Manasevit, H. M.; Simpson, W. I. J. Electrochem. Soc., 1969, 116, 1725. See also papers on the First International Conference on MOCVD, J. Cryst. Growth. 1986, 551, 1 and refs. therein.CrossRefGoogle Scholar
31. Shastry, S. K.; Zemons, S.; Oren, M. J. Cryst. Growth, 1986, 77, 503.Google Scholar
32. Norris, P.; Black, J.; Zemon, S.; Lambert, G. J. Cryst. Growth, 1984, 68 437.Google Scholar
33. Duchemin, J. P.; Bonnet, M.; Koelsch, F.; Huyghe, D. J. Electrochem. Soc. 1978, 43, 181.Google Scholar
34. Duchemin, J. P.; Bonnet, M.; Koelsch, F. J. Electrochem. Soc. 1978 125, 637.Google Scholar
35. Duchemin, J. P.; Bonnet, M.; Beuchet, G. J. Vacuum Sci. Technol. 1979, 16, 1126.Google Scholar
36. Huelsman, A. D.; Reif, R.; Fonstad, C G. Appl. Phys. Lett. 1987, 50, 206.Google Scholar
37. Reynolds, S.; Vook, D. W.; Gibbons, J. F. Appl. Phys. Lett. 1986, 49, 1720.Google Scholar
38. Fraas, L. M.; McLeod, P. S.; Partain, L. D.; Weiss, R. E.; Cape, J. A. J. Cryst. Growth 1986, 77, 386.CrossRefGoogle Scholar
39. Larsen, C. A.; Chen, C. H.; Kitamura, M.; Stringfellow, G. B.; Brown, D. W.; Roberston, A. J. Appl. Phys. Lett. 1986, 48, 1531.Google Scholar
40. Lum, R. M.; Klingert, J. K. Lamont, M. G. Appl. Phys. Lett. 1987, 50, 284.Google Scholar
41. Chen, C. H., Cao, D. S., Stringfellow, G. B., J. of Electronic Materials, 1988, 17, 67.Google Scholar
42. Chen, C.H., Larsen, C.A., Stringfellow, G. B., Appl. Phys. Lett., 1987, 50, 218 Google Scholar
43. Lum, R. M., Klingert, J. K., Wynn, A. S., Lamont, M.G., A ppl. Phys. Lett. 1988 52 1475.Google Scholar
44. Ludowise, M. J., J. Appl. Phys. 1985 R31 58.Google Scholar
45. Duchemin, J. P., Bonnet, M., Beuchet, G., Koelesch, F., Inst. Phys. Conf. Ser. 45. Inst. of Phys., 1979, 10 Google Scholar
46. Moss, R. H. J. Cryst. Growth. 1984, 68, 78.CrossRefGoogle Scholar
47. Bradley, D. C. Factor, M. M. White, E. A. D. Frigo, D. M. Young, K. V. Chemtronics 1988, 3, 50.Google Scholar
48. Bass, S. J.; Skolnick, M. S.; Chudzynska, H.; Smith, L., J. Cryst. Growth, 1986, 75, 221.CrossRefGoogle Scholar
49. Zaouk, A.; Salvetat, E.; Sakaya, J.; Maury, F.; Constant, G. J. Cryst. Growth, 1981, 55, 135.CrossRefGoogle Scholar
50. Maury, F.; El Hammadi, A.; Constant, G. J. P. J. Cryst. Growth, 1984, 68, 88.Google Scholar
51. Chatterjee, A. K.; Faktor, M. M.; Moss, R. H.; White, E. A. D. J de Physique, 1982, C5, 491.Google Scholar
52. Zaouk, A.; Salvetat, E.; Sakaya, J.; Maury, F.; Constant, G. J. Cryst. Growth, 1981, 55, 135.CrossRefGoogle Scholar
53. Haigh, J.; O'Brien, S. J. Cryst. Growth, 1984, 68, 550.CrossRefGoogle Scholar
54. Arif, A. M.; Benac, B. L.; Cowley, A. H.; Geerts, R. L; Jones, R. A.; Kidd, K. B.; Power, J. M.; Schwab, S. T. J. Chem. Soc. Chem. Comm., 1986, 1543.CrossRefGoogle Scholar
55. Heaton, D. E., Jones, R. A., Kidd, K. B. Cowley, A. H., Nunn, C. M. Polyhedron in press.Google Scholar
56. Arif, A. M., Benac, B. L., Cowley, A. H., Jones, R. A., Kidd, K. B., Nunn, C. M. New J. Chem. 1988,12, 553.Google Scholar
57. Coates, G.E.; Graham, J. J. Chem. Soc. 1963, 233.CrossRefGoogle Scholar
58. Beachley, O. T.; Coates, G. E. J. Chem. Soc. 1965, 3241.Google Scholar
59. Wells, R. L.; Purdy, A. P.; McPhail, A. T.; Pitt, C. G. J., Organomet. Chem. 1986, 308, 281.Google Scholar
60. Beachley, O. T.; Kopasz, J. P.; Zhang, H.; Hunter, W. E.; Atwood, J. L. J. Organomet Chem.1987, 325, 69 CrossRefGoogle Scholar
61. Pitt, C. G.; Purdy, A. P.; Higa, K. T.; Wells, R. L. Organometallics 1986, 5, 1266.CrossRefGoogle Scholar
62. Pitt, C. G.; Higa, K. T.; McPhail, A. T.; Wells, R. L. Inorg. Chem. 1986, 25, 2483.Google Scholar
63. Wells, R. L.; Purdy, A. P.; Higa, K. T.; McPhail, A. T.; Pitt, C. G. J. Organometallic Chem. 1987, 325, C7.Google Scholar
64. Purdy, A. P.; Wells, R. L.; McPhail, A. T.; Pitt, C. G. Organometallics, 1987, 6, 2099.Google Scholar
65. Cowley, A. H. Benac, B. L. Ekerdt, J. G. Jones, R. A. Kidd, K. B. Lee, J. Year. Miller, J. E. J. Amer. Chem. Soc. 1988, 110, 6248.Google Scholar
66. Chiu, T. H.; Tsang, W. T., Ditzenberger, J. A.; Tu, C. W.; Ren, F.; Wu, C. S J. Electronic Matls., 1988, 17, 217.Chiu, T. H.; Tsang, W. T.; Cunningham, J. E., Robertson, Jr. A. J. Appl.Phys. Lett. 1987, 62. 2302.Tsang. W. T., App1. Phys. Lett. 1984, 45., 1234.Google Scholar
67. Maury, F.; Combes, M.; Constant, G.; Carles, R.; Renucci, J. B. J. de Physique 1982, 45, CI 347.Google Scholar
68. Maury, F.; Constant, G. Polyhedron, 1984, 3 581.Google Scholar
69. Bradley, D. C. personal communication. See also Andrews, D., Davies, G.J., Bradley, D. C. Frigo, D. M., White, E. A. D. Appl. Phys. Lett. in press.Google Scholar