Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-05T16:21:54.396Z Has data issue: false hasContentIssue false

The Conversion of Czochralski Silicon from P-Type to N-Type by Hydrogen Plasma Enhanced Thermal Donor Formation

Published online by Cambridge University Press:  15 February 2011

R. Job
Affiliation:
University of Hagen, LGBE, Haldener Str. 182, P. O. Box 940, D-58084 Hagen, GERMANY
D. Borchert
Affiliation:
University of Hagen, LGBE, Haldener Str. 182, P. O. Box 940, D-58084 Hagen, GERMANY
Y. A. Bumay
Affiliation:
Belarussian Polytechnical Academy, Skariny Av. 65, 220027, Minsk, BELARUS
W. R. Fahrner
Affiliation:
University of Hagen, LGBE, Haldener Str. 182, P. O. Box 940, D-58084 Hagen, GERMANY
G. Grabosch
Affiliation:
University of Hagen, LGBE, Haldener Str. 182, P. O. Box 940, D-58084 Hagen, GERMANY
I. A. Khorunzhii
Affiliation:
Belarussian Polytechnical Academy, Skariny Av. 65, 220027, Minsk, BELARUS
A. G. Ulyashin
Affiliation:
Belarussian Polytechnical Academy, Skariny Av. 65, 220027, Minsk, BELARUS
Get access

Abstract

Our experiments show a hydrogen plasma assisted creation of p-n junctions in p-type Cz silicon due to a hydrogen enhanced thermal donor (TD) formation at temperatures ≤450 °C. Applying DC or HF plasma treatments a conversion of p-type into n-type Cz silicon by TD formation occurs. One can distinguish one step processes (p-n junction formation appears just after the plasma exposure) and two step processes (p-n junction formation requires subsequent post hydrogenation annealing). The samples are studied by depth resolved spreading resistance probe (SRP), capacitance-voltage (CV) and Hall measurements. For the one step processes a kinetic model for hydrogen enhanced TD formation is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Brown, A.R., Claybourn, M., Murray, R., Nandhra, P.S., Newman, R.C., Tucker, J.H., Semicond. Sci. Technol. 3, 591 (1988).Google Scholar
[2] Murray, R., Brown, A.R., Newman, R.C., Mater. Sci. Eng. B. 4, 299 (1990).Google Scholar
[3] Stein, H.J., Hahn, S.K., Appl. Phys. Lett., 56, 63 (1990).Google Scholar
[4] Stein, H.J., Hahn, S.K., J. Appl. Phys. 75, 3477 (1994).Google Scholar
[5] Stein, H.J., Hahn, S.K., J. Electrochem. Soc. 142, 1242 (1995).Google Scholar
[6] Ulyashin, A.G., Bumay, Yu.A., Job, R., Fahrner, W.R., submitted to Appl. Phys. Lett. (1996)Google Scholar
[7] Maddalon-Vinante, C., Barbier, D., Erramli, H., Blondiaux, G., J. Appl. Phys. 74, 6115 (1993).Google Scholar
[8] Shimura, F. (editor), Oxygen in Silicon, Academic Press, New York (1994).Google Scholar
[9] Vandervost, W., Clarysse, T., J. Electrochem. Soc. 137, 679 (1990).Google Scholar
[10] Choo, S.C., Leong, M.S., Liem, Chandra B.T., Kong, K.C., Sol. Stat. Electron. 33, 783 (1990).Google Scholar
[11] Berkowitz, H.L., Lux, R.A., J. Electrochem. Soc. 128, 1137 (1981).Google Scholar
[12] Andre, E.C., Jpn. J. Appl. Phys. 30, 1511 (1991).Google Scholar
[13] Sieber, N. and Wulf, H.E., Phys. Stat. Sol. (a), 126, 213 (1991).Google Scholar
[14] Sze, S.M., Physics of Semiconductor Devices, John Wiley & Sons, Inc., New York (1981).Google Scholar
[15] Murin, L.I., Markevich, V.P., in: Defect Control in Semiconductors (editer: Sumino, K.), Elsevier Science Publishers B.V., North Holland (1990), p. 199.Google Scholar
[16] Pearton, S.J., Corbett, J.W., Stavola, M., Hydrogen in Crystalline Semiconductors, Springer-Verlag, Berlin, Heidelberg, New York (1992).Google Scholar
[17] Estreicher, S.K., Mat. Sei. Eng. R14, 319 (1995).Google Scholar
[18] Borenstein, J.T., Corbett, J.W., Pearton, S.J., J. Appl. Phys. 73, 2751 (1993).Google Scholar
[19] van Wiezingen, A., Warmoltz, N., Physica 22, 849 (1956).Google Scholar
[20] Mathiot, D., Phys. Rev. B 40, 5867 (1989).Google Scholar