Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-13T13:36:03.830Z Has data issue: false hasContentIssue false

Circular Photogalvanic Effect in SiGe Semiconductor Quantum Wells

Published online by Cambridge University Press:  17 March 2011

Sergey D. Ganichev
Affiliation:
Fakultäat für Physik, Universitäat Regensburg, 93040 Regensburg, Germany A. F. Ioffe Physico-Technical Institute, 194021 St. Petersburg, Russia
Franz-Peter Kalz
Affiliation:
Fakultäat für Physik, Universitäat Regensburg, 93040 Regensburg, Germany
Ulrich Rössler
Affiliation:
Fakultäat für Physik, Universitäat Regensburg, 93040 Regensburg, Germany
Wilhelm Prettl
Affiliation:
Fakultäat für Physik, Universitäat Regensburg, 93040 Regensburg, Germany
Eugenius L. Ivchenko
Affiliation:
A. F. Ioffe Physico-Technical Institute, 194021 St. Petersburg, Russia
Vasily V. Bel'kov
Affiliation:
A. F. Ioffe Physico-Technical Institute, 194021 St. Petersburg, Russia
Robert Neumann
Affiliation:
Walter Schottky Institute, TU Munich, D-85748 Garching, Germany
Karl Brunner
Affiliation:
Walter Schottky Institute, TU Munich, D-85748 Garching, Germany
Gerhard Abstreiter
Affiliation:
Walter Schottky Institute, TU Munich, D-85748 Garching, Germany
Get access

Abstract

The photogalvanic effects, which require a system lacking inversion symmetry, become possible in SiGe based quantum well (QW) structures due to their built-in asymmetry. We report on observations of the circular and linear photogalvanic effects induced by infrared radiation in (001)-and (113)-orientedp–Si/Si1–xGex QW structures and analyse these observations in view of the possible symmetry of these structures. The circular photogalvanic effect arises due to optical spin orientation of free carriers in QWs with band splitting in k-space which results in a directed motion of free carriers in the plane of the QW. We discuss possible mechanisms that give rise to spin-splitting of the electronic subband states for different symmetries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Datta, S. and Das, B., Appl. Phys. Lett. 56, 665 (1990).Google Scholar
2. Ganichev, S.D., Ketterl, H., Prettl, W., Ivchenko, E.L., and Vorobjev, L.E., Appl. Phys. Lett. 77, 3146 (2000).Google Scholar
3. Ganichev, S.D., Ivchenko, E.L., Danilov, S.N., Eroms, J., Wegscheider, W., Weiss, D., and Prettl, W., Phys. Rev. Lett. 86, 4358 (2001).Google Scholar
4. Ivchenko, E.L. and Pikus, G.E., Superlattices and Other Heterostructures. Symmetry and Optical Phenomena, Springer Series in Solid State Sciences, vol. 110, Springer-Verlag, 1995; second edition 1997; Ch. 10.Google Scholar
5. Ganichev, S.D., Physica B 273–274, 737 (1999).Google Scholar
6. Bottomley, D.J., Driel, H.M. Van, and Baribeau, J.-M., (Proc. 22nd ICPS, World Scientific, Singapore, 1994) pp. 1572.Google Scholar
7. Seto, M., Helm, M., Moussa, Z., Boucaud, P., Julien, F.H., Lourtioz, J.M., Nützel, J.F., and Abstreiter, G., Appl. Phys. Lett. 65, 2969 (1994).Google Scholar
8. Bottomley, D.J., Omi, H., and Ogino, T., J. Crysal Growth 225, 16 (2001).Google Scholar
9. Ganichev, S.D., Ivchenko, E. L., and Prettl, W., Physica E, in pressGoogle Scholar
10. Bychkov, Yu.L. and Rashba, E.I., J. Phys. C 17, 6039 (1984).Google Scholar
11. Winkler, R., Phys. Rev. B 62, 4245 (2000).Google Scholar
12. Bir, G.L. and Pikus, G.E., Symmetry and Strain-induced Effects in Semiconductors (Wiley, New York 1974).Google Scholar
13. Ivchenko, E.L., Kaminski, A.Yu., and Rössler, U., Phys. Rev. B 54, 5852 (1996).Google Scholar