Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-23T04:36:00.237Z Has data issue: false hasContentIssue false

High-Resolution Field Emission Scanning Electron Microscopy (FESEM) Imaging of Cellulose Microfibril Organization in Plant Primary Cell Walls

Published online by Cambridge University Press:  24 August 2017

Yunzhen Zheng
Affiliation:
Department of Biology, Penn State University, University Park, PA 16802, USA
Daniel J. Cosgrove
Affiliation:
Department of Biology, Penn State University, University Park, PA 16802, USA
Gang Ning*
Affiliation:
Department of Biology, Penn State University, University Park, PA 16802, USA Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
*
*Corresponding author. gxn7@psu.edu
Get access

Abstract

We have used field emission scanning electron microscopy (FESEM) to study the high-resolution organization of cellulose microfibrils in onion epidermal cell walls. We frequently found that conventional “rule of thumb” conditions for imaging of biological samples did not yield high-resolution images of cellulose organization and often resulted in artifacts or distortions of cell wall structure. Here we detail our method of one-step fixation and dehydration with 100% ethanol, followed by critical point drying, ultrathin iridium (Ir) sputter coating (3 s), and FESEM imaging at a moderate accelerating voltage (10 kV) with an In-lens detector. We compare results obtained with our improved protocol with images obtained with samples processed by conventional aldehyde fixation, graded dehydration, sputter coating with Au, Au/Pd, or carbon, and low-voltage FESEM imaging. The results demonstrated that our protocol is simpler, causes little artifact, and is more suitable for high-resolution imaging of cell wall cellulose microfibrils whereas such imaging is very challenging by conventional methods.

Type
Micrographia
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, J.T. & Crispin, K.L. (2013). Ultra-thin iridium as a replacement coating for carbon in high resolution quantitative analyses of insulating specimens. Microsc Microanal 19(Suppl 2), 10701071.Google Scholar
Baskin, T.I., Marga, F. & Grandbois, M. (2005). A comparison of atomic force microscopy and field-emission scanning electron microscopy for imaging the plant cell wall. Microsc Microanal 11, 11301131.CrossRefGoogle Scholar
Berry, V.K. (1988). Characterization of polymer blends by low voltage scanning electron microscopy. Scanning 10(1), 1927.CrossRefGoogle Scholar
Carpita, N.C., Defernez, M., Findlay, K., Wells, B., Shoue, D.A., Catchpole, G., Wilson, R.H. & McCann, M.C. (2001). Cell wall architecture of the elongating maize coleoptile. Plant Physiol 127, 551565.Google Scholar
Cosgrove, D.J. (2014). Re-constructing our models of cellulose and primary cell wall assembly. Curr Opin Plant Biol 22C, 122131.Google Scholar
Cosgrove, D.J. & Jarvis, M.C. (2012). Comparative structure and biomechanics of plant primary and secondary cell walls. Front Plant Sci 3, 204.CrossRefGoogle Scholar
Ding, S-Y., Zhao, S. & Zeng, Y. (2014). Size, shape, and arrangement of native cellulose fibrils in maize cell walls. Cellulose 21, 863871.CrossRefGoogle Scholar
Domozych, D.S., Sorensen, I., Popper, Z.A., Ochs, J., Andreas, A., Fangel, J.U., Pielach, A., Sacks, C., Brechka, H., Ruisi-Besares, P., Willats, W.G. & Rose, J.K. (2014). Pectin metabolism and assembly in the cell wall of the charophyte green alga Penium margaritaceum . Plant Physiol 165, 105118.CrossRefGoogle ScholarPubMed
Donald, A.M. (2003). The use of environmental scanning electron microscopy for imaging wet and insulating materials. Nat Mater 2, 511516.Google Scholar
Emons, A.M.C. (1988). Methods for visualizing cell wall texture. Acta Bot Neerl 37, 3138.Google Scholar
Erlandsen, S.L., Kristich, C.J., Dunny, G.M. & Wells, C.L. (2004). High-resolution visualization of the microbial glycocalyx with low-voltage scanning electron microscopy: dependence on cationic dyes. J Histochem Cytochem 52(11), 14271435.CrossRefGoogle ScholarPubMed
Frey-Wyssling, A. (1954). The fine structure of cellulose microfibrils. Science 119, 8082.Google Scholar
Fujita, M. & Wasteneys, G.O. (2014). A survey of cellulose microfibril patterns in dividing, expanding, and differentiating cells of arabidopsis thaliana. Protoplasma 251, 687698.Google Scholar
Goldstein, A., Soroka, Y., Frušić‐Zlotkin, M., Popov, I. & Kohen, R. (2014). High resolution SEM imaging of gold nanoparticles in cells and tissues. J Microsc 256(3), 237247.Google Scholar
Goodenough, U.W. & Heuser, J.E. (1985). The chlamydomonas cell-wall and its constituent glycoproteins analyzed by the quick-freeze, deep-etch technique. J Cell Biol 101, 15501568.CrossRefGoogle ScholarPubMed
Griffin, B.J. (2007). Variable pressure and environmental scanning electron microscopy: imaging of biological samples. Method Mol Biol 369, 467495.Google Scholar
Kafle, K., Xi, X., Lee, C.M., Tittmann, B.R., Cosgrove, D.J., Park, Y.B. & Kim, S.H. (2014). Cellulose microfibril orientation in onion (Allium cepa L.) epidermis studied by atomic force microscopy (AFM) and vibrational sum frequency generation (SFG) spectroscopy. Cellulose 21(2), 10751086.CrossRefGoogle Scholar
Kirk, S.E., Skepper, J.N. & Donald, A.M. (2009). Application of environmental scanning electron microscopy to determine biological surface structure. J Microsc 233, 205224.CrossRefGoogle ScholarPubMed
Liu, J. (2000). High-resolution and low-voltage FE-SEM imaging and microanalysis in materials characterization. Mater Charact 44, 353363.Google Scholar
Lucocq, J. (2003). Electron microscopy in cell biology. In Essential Cell Biology (vol. 1 Cell Structure) Davey, J. & Michael, Lord J. (Eds.), pp. 63112. New York, NY, USA: Oxford Press.Google Scholar
Marga, F., Grandbois, M., Cosgrove, D.J. & Baskin, T.I. (2005). Cell wall extension results in the coordinate separation of parallel microfibrils: Evidence from scanning electron microscopy and atomic force microscopy. Plant J 43, 181190.Google Scholar
McCann, M.C., Wells, B. & Roberts, K. (1990). Direct visualization of cross-links in the primary plant cell wall. J Cell Sci 96, 323334.Google Scholar
McManus, W.R., McMahon, D.J. & Oberg, C.J. (1993). High-resolution scanning electron microscopy of milk products: A new sample preparation procedure. Food Struct 12(4), 8.Google Scholar
Morgan, T.E. & Huber, G.L. (1967). Loss of lipid during fixation for electron microscopy. J Cell Biol 32(3), 757.CrossRefGoogle ScholarPubMed
Muscariello, L., Rosso, F., Marino, G., Giordano, A., Barbarisi, M., Cafiero, G. & Barbarisi, A. (2005). A critical overview of esem applications in the biological field. J Cell Physiol 205, 328334.Google Scholar
Osumi, M., Misuzu, B.A.B.A., Naito, N., Akiko, I., Yamada, N. & Nagatani, T. (1988). High resolution, low voltage scanning electron microscopy of uncoated yeast cells fixed by the freeze-substitution method. J Electron Microsc 37(1), 1730.Google Scholar
Osumi, M., Yamada, N., Kobori, H., Akiko, I., Naito, N., Misuzu, A. & Nagatani, T. (1989). Cell wall formation in regenerating protoplasts of Schizosaccharomyces pombe: study by high resolution, low voltage scanning electron microscopy. J Electron Microsc 38(6), 457468.Google Scholar
Pawley, J.B. & Schatten, H. (2008). Biological Low-Voltage Scanning Electron Microscopy. New York, Berlin: Springer Verlag. Google Scholar
Preston, R.D. & Nicolai, E. (1948). An electron microscope study of cellulose in the wall of Valonia ventricosa . Nature 162, 665667.Google Scholar
Schatten, H. (2011). Low voltage high-resolution SEM (LVHRSEM) for biological structural and molecular analysis. Micron 42(2), 175185.Google Scholar
Schatten, H. (2015). Low voltage SEM and correlative microscopy to analyze delicate biological material. Microsc Microanal 21(Suppl 3), 507508.CrossRefGoogle Scholar
Schatten, H., Sibley, L.D. & Ris, H. (2003). Structural evidence for actin-like filaments in Toxoplasma gondii using high-resolution low-voltage field emission scanning electron microscopy. Microsc Microanal 9(4), 330335.CrossRefGoogle ScholarPubMed
Schrad, J.R., Young, E.J., Abrahão, J.S., Cortines, J.R. & Parent, K.N. (2017). Microscopic characterization of the Brazilian giant Samba virus. Viruses 9(2), 30.Google Scholar
Thimm, J.C., Burritt, D.J., Ducker, W.A. & Melton, L.D. (2009). Pectins influence microfibril aggregation in celery cell walls: An atomic force microscopy study. J Struct Biol 168, 337344.Google Scholar
Vesk, M., Dibbayawan, T.P., Vesk, P.A. & Egan, E.A. (2000). Field emission scanning electron microscopy of plant cells. Protoplasma 210(3–4), 138155.Google Scholar
Weibull, C., Christiansson, A. & Carlemalm, E. (1983). Extraction of membrane lipids during fixation, dehydration and embedding of Acholeplasma laidlawii‐cells for electron microscopy. J Microsc 129(2), 201207.Google Scholar
Xiao, C., Zhang, T., Zheng, Y., Cosgrove, D.J. & Anderson, C.T. (2016). Xyloglucan deficiency disrupts microtubule stability and cellulose biosynthesis in Arabidopsis, altering cell growth and morphogenesis. Plant Physiol 170(1), 234249.CrossRefGoogle ScholarPubMed
Zhang, T., Vavylonis, D., Durachko, D.M. & Cosgrove, D.J. (2017). Nanoscale movements of cellulose microfibrils in primary cell walls. Nat Plants 3, 17056.Google Scholar
Zhang, T., Zheng, Y. & Cosgrove, D.J. (2016). Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy. Plant J 85(2), 179192.Google Scholar
Zhu, C., Ganguly, A., Baskin, T.I., McClosky, D.D., Anderson, C.T., Foster, C., Meunier, K.A., Okamoto, R., Berg, H. & Dixit, R. (2015). The fragile fiber1 kinesin contributes to cortical microtubule-mediated trafficking of cell wall components. Plant Physiol 167, 780792.CrossRefGoogle ScholarPubMed
Supplementary material: File

Zheng et al supplementary material

Figure S1

Download Zheng et al supplementary material(File)
File 746.2 KB