Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-18T21:11:24.820Z Has data issue: false hasContentIssue false

Computational model for multiscale simulation of laser ablation

Published online by Cambridge University Press:  21 March 2011

Leonid V. Zhigilei*
Affiliation:
Department of Materials Science & Engineering, University of Virginia, Charlottesville, Virginia 22904 E-mail: lz2n@virginia.edu
Get access

Abstract

Multiscale computational approach that combines different methods to study laser ablation phenomenon is presented. The methods include the molecular dynamics (MD) breathing sphere model for simulation of the initial stage of laser ablation, a combined MD - finite element method (FEM) approach for simulation of propagation of the laser-induced pressure waves out from the MD computational cell, and the direct simulation Monte Carlo (DSMC) method for simulation of the ablation plume expansion. The multiscale approach addresses different processes involved in laser ablation with appropriate resolutions and, at the same time, accounts for the interrelations between the processes. A description of the ablation plume appropriate for making a connection between the MD simulation of laser ablation and the DSMC simulation of the ablation plume expansion is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Proceedings of the 5th International Conference on Laser Ablation, edited by Horwitz, J. S., Krebs, H.-U., Murakami, K., Stuke, M., Appl. Phys. A69 [Suppl.] (1999).Google Scholar
2. Bäuerle, D., Laser Processing and Chemistry (Springer-Verlag, Berlin Heidelberg, 2000).Google Scholar
3. Dreisewerd, K., Schärenberg, M., Karas, M., and Hillenkamp, F., Int. J. Mass Spectrom. Ion Processes 141, 127 (1995).Google Scholar
4. Karas, M., Gläckmann, M., and Schäfer, J., J. Mass Spectrom. 35, 1 (2000).Google Scholar
5. Handschuh, M., Nettesheim, S., and Zenobi, R., Appl. Surf. Sci. 137, 125 (1999).Google Scholar
6. Puretzky, A. A., Geohegan, D. B., Hurst, G. B., Buchanan, M. V., and Luk'yanchuk, B. S., Phys. Rev. Lett. 83, 444 (1999).Google Scholar
7. Zhigilei, L. V., Kodali, P. B. S., and Garrison, B. J., J. Phys. Chem. B101, 2028 (1997); ibid.,102, 2845 (1998).Google Scholar
8. Zhigilei, L. V. and Garrison, B. J., Appl. Phys. Lett. 71, 551 (1997).Google Scholar
9. Zhigilei, L. V., Kodali, P. B. S., and Garrison, B. J., Chem. Phys. Lett. 276, 269 (1997).Google Scholar
10. Zhigilei, L. V. and Garrison, B. J., Rapid Commun. Mass Spectrom. 12, 1273 (1998).Google Scholar
11. Zhigilei, L. V. and Garrison, B. J., Appl. Phys. Lett. 74, 1341 (1999).Google Scholar
12. Zhigilei, L. V. and Garrison, B. J., Appl. Phys. A69, S75 (1999).Google Scholar
13. Zhigilei, L. V. and Garrison, B. J., J. Appl. Phys. 88, 1281 (2000).Google Scholar
14. Wu, X., Sadeghi, M. and Vertes, A., J. Phys. Chem. B102, 4770 (1998).Google Scholar
15. Sadeghi, M., Wu, X., and Vertes, A., J. Phys. Chem. B105, 2578 (2001).Google Scholar
16. Dutkiewicz, Å., Johnson, R. E., Vertes, A., and P'drys, R., J. Phys. Chem. A103, 2925 (1999).Google Scholar
17. Johnson, R. E., in Large Ions: Their Vaporization, Detection and Structural Analysis, edited by Baer, T., Ng, C. Y., Powis, I. (John Wiley: New York, 1996) p. 49.Google Scholar
18. Ohmura, E. and Fukumoto, I., Int. J. Japan Soc. Prec. Eng. 30, 128 (1996).Google Scholar
19. Herrmann, R. F. W., Gerlach, J., and Campbell, E. E. B., Appl. Phys. A66, 35 (1998).Google Scholar
20. Lorazo, P., Lewis, L. J., and Meunier, M., Appl. Surf. Sci. 168, 276 (2000).Google Scholar
21. Bird, G. A., Molecular gas dynamics and the direct simulation of gas flows (Clarendon Press, Oxford, 1994).Google Scholar
22. Sibold, D. and Urbassek, H. M., J. Appl. Phys. 73, 8544 (1993).Google Scholar
23. Urbassek, H. M. and Sibold, D., Phys. Rev. Lett. 70, 1886 (1993).Google Scholar
24. Itina, T. E., J. Appl. Phys. 89, 740 (2001).Google Scholar
25. Birdsall, C. K., IEEE Trans. Plasma Sci. 19, 65 (1991).Google Scholar
26. Zhidkov, A. G., Phys. Plasmas 5, 541 (1998).Google Scholar
27. Zhidkov, A. G., Zhigilei, L. V., Sasaki, A., and Tajima, T., Appl. Phys. A, in press.Google Scholar
28. Chang, T.-C., Dlott, D., J. Chem. Phys. 90, 3590(1989).Google Scholar
29. Zhigilei, L. V. and Garrison, B. J., in Multiscale Modelling of Materials, Mater. Res. Soc. Proc. 538, 491(1999).Google Scholar
30. Smirnova, J. A., Zhigilei, L. V., and Garrison, B. J., Comput. Phys. Commun., 118, 11 (1999).Google Scholar
31. Dekel, E., Eliezer, S., Henis, Z., Moshe, E., Ludmirsky, A., and Goldberg, I. B., J. Appl. Phys. 84, 4851 (1998).Google Scholar
32. Zeifman, M., Zhigilei, L. V., and Garrison, B. J., in preparation.Google Scholar