Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T13:51:01.407Z Has data issue: false hasContentIssue false

Positron Emission Tomography Study of Brain Benzodiazepine Receptors in Friedreich's Ataxia

Published online by Cambridge University Press:  18 September 2015

C. Chavoix*
Affiliation:
Du Service Hospitalier Frédéric Joliot, CEA, Département de Biologie, Hôpital d'Orsay, 91406 Orsay, France
Y. Samson
Affiliation:
Du Service Hospitalier Frédéric Joliot, CEA, Département de Biologie, Hôpital d'Orsay, 91406 Orsay, France
S. Pappata
Affiliation:
Du Service Hospitalier Frédéric Joliot, CEA, Département de Biologie, Hôpital d'Orsay, 91406 Orsay, France
C. Prenant
Affiliation:
Du Service Hospitalier Frédéric Joliot, CEA, Département de Biologie, Hôpital d'Orsay, 91406 Orsay, France
M. Mazière
Affiliation:
Du Service Hospitalier Frédéric Joliot, CEA, Département de Biologie, Hôpital d'Orsay, 91406 Orsay, France
A. Seck
Affiliation:
Clinique de Neurologie et de Neuropsychologie and INSERM U289, Hôpital de la Salpêtrière, 75013 Paris, France
Y. Agid
Affiliation:
Clinique de Neurologie et de Neuropsychologie and INSERM U289, Hôpital de la Salpêtrière, 75013 Paris, France
*
National Institute of Health, Laboratory of Neuropsychology, Bdg 9, Rm 1N107, Bethesda, Maryland 20892, USA
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Central type benzodiazepine receptors were studied in 9 patients with Friedreich's ataxia and 12 healthy subjects using positron emission tomography (PET) and [11C]Ro 15-1788, a specific antagonist of the central type benzodiazepine receptors, as radioligand. A standard PET procedure was used in 5 patients and 8 controls to obtain brain kinetics of the total binding of the radioligand. The remaining subjects were intravenously injected with a saturating dose of unlabeled Ro 15-1788, 30 minutes after the tracer injection, to determine the nondisplaceable binding of [11C]Ro 15-1788. A semi-quantitative method was used to quantify the [11C]Ro 15-1788 data. None of the quantification indices in the cerebellar hemispheres, or in the other brain areas investigated, was significantly modified in patients with Friedreich's ataxia. These findings suggest that brain benzodiazepine receptors are unaffected in Friedreich's ataxia.

Type
Original Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1990

References

REFERENCES

1.Oppenheimer, DR. Brain lesions in Friedreich’s ataxia. Can J Neurol Sci 1979; 6: 173176.CrossRefGoogle ScholarPubMed
2.Pole, P, Bonetti, EP, Schaffner, R, et al. A three-state model of the benzodiazepine receptor explains the interactions between the benzodiazepine antagonist Ro 15-1788, benzodiazepine tranquilizers, β-carbolines, and phenobarbitone. Naunyn-Schmiedeberg’s Arch Pharmacol 1982; 321: 260264.Google Scholar
3.Möhler, H, Okada, T. Benzodiazepine receptor: demonstration in the central nervous system. Science 1977; 198: 849851.Google ScholarPubMed
4.Huxtable, R, Azari, J, Reisine, T, et al. Regional distribution of amino acids in Friedreich’s ataxia brains. Can J Neurol Sci 1979; 6: 255258.CrossRefGoogle ScholarPubMed
5.Skolnick, P, Syapin, P, Paugh, BA, et al. Reduction in benzodiazepine receptors associated with Purkinje cell degeneration in “nervous” mutant mice. Nature 1979; 277: 397399.CrossRefGoogle ScholarPubMed
6.Speth, RC, Yamamura, HI. Benzodiazepine receptors: alterations in mutant mouse cerebellum. Eur J Pharmacol 1979; 54: 397399.Google ScholarPubMed
7.Chang, RSL, Tran, VT, Snyder, SH. Neurotransmitter receptor localizations: brain lesion induced alterations in benzodiazepine, GAB A, β-adrenergic and histamine H1-receptor binding. Brain Res 1980; 190: 95110.CrossRefGoogle Scholar
8.Kish, SJ, Perry, TL, Hornykiewicz, O. Benzodiazepine receptor binding in cerebellar cortex: observations in olivopontocerebellar atrophy. J Neurochem 1984; 42: 466469.CrossRefGoogle ScholarPubMed
9.Hantraye, Ph, Kaïjima, M, Prenant, C, et al. Central type benzodiazepine binding sites: a positron emission tomography study in the baboon’s brain. Neurosci Lett 1984; 48: 115–20.Google ScholarPubMed
10.Persson, A, Ehrin, E, Eriksson, L, et al. Imaging of [11C]-labelled RO 15–1788 binding to benzodiazepine receptors in the human brain by positron emission tomography. J Psychiat Res 1985; 19: 609622.CrossRefGoogle ScholarPubMed
11.Samson, Y, Hantraye, P, Baron, JC, et al. Kinetics and displacement of [11C]RO 15–1788, a benzodiazepine antagonist, studied in human brain in vivo by positron tomography. Eur J Pharmacol 1985; 110: 247251.Google ScholarPubMed
12.Shinotoh, H, Yamasaki, T, Inoue, O, et al. Visualization of specific binding sites of benzodiazepine in human brain. J Nucl Med 1986; 27: 15931599.Google ScholarPubMed
13.Pappata, S, Samson, Y, Chavoix, C, et al. Regional specific binding of [nC]RO 15-1788 to central type benzodiazepine receptors in human brain: quantitative evaluation by PET. J Cereb Blood Flow Metab 1988; 8: 304314.CrossRefGoogle ScholarPubMed
14.Geoffroy, G, Barbeau, A, Breton, G, et al. Clinical description and roentgenologic evaluation of patients with Friedreich’s ataxia. Can J Neurol Sci 1976; 3: 279286.CrossRefGoogle ScholarPubMed
15.Mazière, M, Hantraye, Ph, Prenant, C, et al. Synthesis of ethyl 8-fluoro-5,6-dihydro-5-[11C]methyl-6-oxo-4H-imidazo[l ,5-a] [l-4]benzodiazepine-3-carboxylate (Ro 15-1788-11C): a specific radioligand for the in vivo study of central benzodiazepine receptors by positron emission tomography. Int J Appl Radiat Isot 1984; 35: 973976.CrossRefGoogle Scholar
16.Mazziotta, JC, Phelps, ME, Miller, J, et al. Tomographic mapping of human cerebral metabolism: normal unstimulated state. Neurology 1981; 31: 503516.Google Scholar
17.Samson, y, Bernuau, J, Pappata, S, et al. Cerebral uptake of benzodiazepine measured by positron emission tomography in hepatic encephalopathy. N Engl J Med 1987; 316: 414415.Google ScholarPubMed
18.Samson, Y, Pappata, S, Baron, JC, et al. A bilateral effect of unilateral supratentorial stroke on cerebellar central type benzodiazepine receptors (BZRs): a PET study in humans. J Cereb Blood Flow Metab 1987; 7 (Suppl 1): S43.Google Scholar
19.Goeders, NE, Kuhar, MJ. Benzodiazepine receptor binding in vivo with [3H]-Ro 15-1788. Life Sci 1985; 37: 345355.CrossRefGoogle ScholarPubMed
20.Persson, A, Pauli, S, Swahn, CG, et al. Cerebral uptake of 11C-Ro 15-1788 and its acid metabolite 11C-Ro 15-3890: PET study in healthy volunteers. Human Psychopharmacol 1989; 4: 215220.CrossRefGoogle Scholar
21.Mintun, MA, Raichle, ME, Kilbourn, MR, et al. A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 1984; 15: 217227.Google ScholarPubMed
22.Albin, RL. Cha, JJ, Makowiec, RL, et al. Autoradiographic analysis of cerebellar amino acid neurotransmitter receptors in olivopontocerebellar atrophy and Friedreich’s ataxia. Neurology 1989; 39 (Suppl 1): 423.Google Scholar
23.Fry, JP, Rickets, C, Biscoe, TJ. On the location of γ-aminobutyrate and benzodiazepine receptors in the cerebellum of the normal C3H and Lurcher mutant mouse. Neuroscience 1985; 14: 10911101.CrossRefGoogle ScholarPubMed
24.Richards, JG, Schoch, P, Häring, P, et al. Resolving GABAA/benzodiazepine receptors: cellular and subcellular localization in the CNS with monoclonal antibodies. J Neuro sci 1987; 7: 18661886.Google ScholarPubMed
25.Meinecke, DL, Tallman, J, Rakic, P. GABAA/benzodiazepine receptor-like immunoreactivity in rat and monkey cerebellum. Brain Res 1989; 493: 303319.CrossRefGoogle ScholarPubMed