Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-22T09:50:50.115Z Has data issue: false hasContentIssue false

Low Temperature Deposition of Metal Oxide Thin Films in Supercritical Carbon Dioxide Using Metal-organic Precursors

Published online by Cambridge University Press:  17 March 2011

Theodosia Gougousi
Affiliation:
Physics, UMBC, 1000 Hilltop Circle, Baltimore, MD, 21250
Zhiying Chen
Affiliation:
Physics, UMBC, 1000 Hilltop Circle, Baltimore, MD, 21250
Get access

Abstract

A novel chemical route in thin film formation that includes the use of inorganic and organic peroxides and metal organic complexes soluble in supercritical carbon dioxide has been investigated for the deposition of alumina, titania and zirconia thin films at low temperatures (<150°C). The metal organic precursors used include: Al(acac)3, OTi(tmhd)2, and Zr(acac)4. Tert-butyl peroxide, and a 30% aqueous solution of hydrogen peroxide were used as oxidants. Depositions were carried out in a 25 ml hot wall reactor at pressures ranging from 2100 to 3900 psi at 80-140°C. The deposited thin films were investigated by using X-ray photoelectron spectroscopy (XPS) and transmission Fourier transform infrared spectroscopy (FTIR). XPS and FTIR results indicate the formation of metal oxides thin films with some bonded carbon. The deposition temperatures achieved in this process are substantially lower than those used in conventional vacuum deposition techniques making feasible the deposition on temperature sensitive substrates and organic materials required for the development of hybrid organic/inorganic devices. Processing at low temperatures in supercritical carbon dioxide may provide the basis for the development of an alternative, environmentally friendly, thin film deposition technique for the processing of nanostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kingon, A. I., Maria, J.-P., and Streiffer, S. K., Nature 406, 1032 (2000).Google Scholar
2. Wilk, G. D., Wallace, R. M., and Anthony, J. M., J. Appl. Phys. 89 (10), 5234 (2000).Google Scholar
3. DeTeresa, J. M., Barthelemy, A., Fert, A., Contour, J. P., Montaigne, F., and Sensor, P., Science 286, 507 (1999).Google Scholar
4. Zhang, Q., Li, X., Shen, J., Wu, G., Wang, J., and Chen, L., Materials Letter 45 (6), 311 (2000).Google Scholar
5. Waits, R. K., in “Thin film deposition and patterning” edited by Tompkins, H. G., (AVS, 1998).Google Scholar
6. Dubin, W. M., Microelectronic Engineering 70 (2), 461 (2003).Google Scholar
7. Li, W. H., Ye, J. H., and Li, S. F. Y., Journal of Applied Electrochemistry 31 (12), 1395 (2001).Google Scholar
8. Niesen, T. P., and Guire, M. R. De, Journal of Electroceramics 6, 1697 (2001).Google Scholar
9. Porter, L. A. Jr, Choi, H. C., Ribbe, A. E., and Buriak, J. M., Nano-Letters 2 (10) 1067 (2002).Google Scholar
10. Blackburn, J. M., Long, D. P., and Watkins, J. J., Chemistry of Materials, 12 (9), 2625 (2000).Google Scholar
11. Blackburn, J. M., Long, D. P., Cabanas, A., and Watkins, J. J., Science 294, 141 (2001).Google Scholar
12. Gougousi, T., Barua, D., Young, E. D., and Parsons, G. N., Chem. Mater. 17, 5093 (2005).Google Scholar
13. McHugh, M. and Krukonis, V. J., Supercritical Fluid Extraction (Butterworth-Heinemann, Boston, 1994).Google Scholar
14. Cho, B.-O., Lao, S. X., and Chang, J. P., J. Appl. Phys. 93, 9345 (2003).Google Scholar
15. Kumar, P. Madhu, Balasubramanian, C., Sali, N.D., Bhoraskar, S.V., Rohatgi, V.K., and Badrinarayanan, S., Mater. Sci. Eng. B 1999, 63,215.Google Scholar
16. Pecharroman, C., Gracša, F., Holgado, J. P., Ocana, M., and Gonzalez-Elipe, A. R., Bassas, J., Santiso, J. and Figueras, A., J. Appl. Phys. 93, 4634 (2003).Google Scholar