Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-23T09:41:28.818Z Has data issue: false hasContentIssue false

Preparation of Particulate Core-Shell Metal Oxide-Polymer Nanocomposites by a Sol-Gel Approach

Published online by Cambridge University Press:  01 February 2011

Guido Kickelbick
Affiliation:
Vienna University of Technology, Institute of Materials Chemistry, Getreidemarkt 9, A1060 Wien, Austria, E-mail: guido.kickelbick@tuwien.ac.at
Dieter Holzinger
Affiliation:
Vienna University of Technology, Institute of Materials Chemistry, Getreidemarkt 9, A1060 Wien, Austria, E-mail: guido.kickelbick@tuwien.ac.at
Get access

Abstract

Two general microemulsion-based routes towards surface-functionalized metal oxide nanoparticles serving as macroinitiators in “grafting from” atom transfer radical polymerization (ATRP), are presented. Metal alkoxides modified with several β-diketone derivatives carrying potential ATRP-initiating sites served as precursors for the particle formation leading in an solgel process to in situ-functionalized titanium-, zirconium-, tantalum-, vanadium-, yttrium-, and iron oxide nanoparticles. The obtained systems were compared with metal oxide nanoparticles prepared by using metal salts as precursors which were functionalized in a second step with ATRP-initiator containing silane coupling agents. The obtained particles had diameters between 5 nm and 640 nm and served as multifunctional polymerization initiators in ATRP using styrene and methyl methacrylate as monomers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schmid, G., Nanoparticles, (Wiley-VCH, 2004).Google Scholar
2. McConnell, W. P., Novak, J. P., Brousseau, L. C. III, Fuierer, R. R., Tenent, R. C., Feldheim, D. L., J. Phys. Chem. B, 104, 8925, (2000).Google Scholar
3. Rogach, A. L., Talapin, D. V., Weller, H., “Semiconductor nanoparticles,” Colloids and Colloid Assemblies, ed. Caruso, F. (Wiley-VCH 2004) p. 52.Google Scholar
4. Kralik, M., Biffis, A., J. Mol. Catal. A, 177, 113, (2001).Google Scholar
5. Zhang, M. Q., Rong, M. Z., Friedrich, K., “Nanoparticle reinforced thermoplastic composites,” Encyclopedia of Nanoscience and Nanotechnology, Vol. 7, ed. Nalwa, H. S. (American Scientific Publishers, 2004) p. 125.Google Scholar
6. Bognolo, G., Adv. Coll. Interface Sci., 106, 169, (2003).Google Scholar
7. Tannenbaum, R., Curr. Trends Polym. Sci., 3, 81, (1998).Google Scholar
8. Rajh, T., Chen, L. X., Lukas, K., Liu, T., Thurnauer, M. C., Tiede, D. M., J. Phys. Chem. B, 106, 10543, (2002).Google Scholar
9. Kickelbick, G., Progr. Polym. Sci., Vol. 28 2002, p. 83.Google Scholar
10. Daniel, M.-C., Astruc, D., Chem. Rev., 104, 293, (2004).Google Scholar
11. Bourgeat-Lami, E., Microspheres, Microcapsules & Liposomes, 5 (Dendrimers, Assemblies, Nanocomposites), 149, (2002).Google Scholar
12. Stöber, W., Fink, A., Bohn, E., J. Colloid Interface Sci., 26, 62, (1968).Google Scholar
13. Turkevitch, J., Stevenson, P. C., Hillier, J., Discuss. Faraday Soc., 11, 55, (1951).Google Scholar
14. Kickelbick, G., Schubert, U., “Organic functionalization of metal oxide nanoparticles,” Synthesis, Functionalization and Surface Treatment of Nanoparticles, ed. Baraton, M.-I. (American Scientific Publishers, 2003) p. 91.Google Scholar
15. Holzinger, D., Kickelbick, G., Chem. Mater., 15, 4944, (2003).Google Scholar
16. Holzinger, D., Kickelbick, G., J. Mater. Chem., 14, 2017, (2004).Google Scholar
17. Cativiela, C., Serrano, J. L., Zurbano, M. M., J. Org. Chem., 60, 3074, (1995).Google Scholar
18. Hoebbel, D., Reinert, T., Schmidt, H., Arpac, E., J. Sol-Gel Sci. Techn., 10, 115, (1997).Google Scholar