Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T11:33:20.061Z Has data issue: false hasContentIssue false

Facile synthesis of hydrodynamic solid lubricant MoS2 from molybdenum trioxide nanorods

Published online by Cambridge University Press:  03 July 2013

Malayil Gopalan Sibi
Affiliation:
Catalytic Conversion and Process Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India
Bharat Singh Rana
Affiliation:
Catalytic Conversion and Process Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India
Lakshmi Narayana Sivakumar Konathala
Affiliation:
Catalytic Conversion and Process Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India
Gananath D. Thakre
Affiliation:
Catalytic Conversion and Process Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India
S. Saran
Affiliation:
Catalytic Conversion and Process Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India
Anil Kumar Sinha*
Affiliation:
Catalytic Conversion and Process Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India
*
a)Address all correspondence to this author. e-mail: asinha@iip.res.in
Get access

Abstract

Molybdenum trioxide nanostructures were synthesized, to make highly friction resistant molybdenum disulfide, by low temperature hydrothermal reaction without using any template or catalyst. The as-synthesized materials were sulfided with H2S at 400 and 800 °C. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier-transform infra-red spectroscopy, and thermogravimetric analysis were used for the physical characterization of the materials. The oxide material is highly crystalline with unique morphology. The factors affecting the size and shape of the synthesized materials were studied in detail. The crystalline nature of the materials decreased after the sulfidation process at 800 °C without any change in morphology. The wear resistance and lubricity of the material were studied under harsh conditions. The comparative study of these materials with MoS2 prepared by the hard templating method (using mesoporous silica template) reveals that the new material synthesized by direct hydrothermal route is pure phase and has better wear resistance and antifriction properties. Ultra high stability of the material is the most distinguished property of the material synthesized.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

These authors contributed equally to this work.

References

REFERENCES

Song, Z.X., Minura, N., Bravo-Suaroz, J.J., Akita, T., Tsubota, S., and Oyama, S.T.: Gas-phase epoxidation of propylene through radicals generated by silica-supported molybdenum oxide. Appl. Catal., A 316, 142 (2007).CrossRefGoogle Scholar
Wang, F. and Ueda, W.: Nanostructured molybdenum oxides and their catalytic performance in the alkylation of arenes. Chem. Commun. 0, 3196 (2008).Google Scholar
Cheng, L., Shao, M.W., Wang, X.H., and Hu, H.B.: Single-crystalline molybdenum trioxide nanoribbons: Photocatalytic, photoconductive, and electrochemical properties. Chem. Eur. J. 15, 2310 (2009).Google Scholar
Comini, E., Yubao, L., Brando, Y., and Sberveglieri, G.: Gas sensing properties of MoO3 nanorods to CO and CH3OH. Chem. Phys. Lett. 407, 368 (2005).CrossRefGoogle Scholar
Huang, X., Zeng, Z., and Zhang, H.: Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 42, 1934 (2013).Google Scholar
Imonishi, N.J., Kanamura, K., and Takehara, Z.: Synthesis of MoS2 thin film by chemical vapor deposition method and discharge characteristics as a cathode of the lithium secondary battery. J. Electrochem. Soc. 139, 2082 (1992).Google Scholar
Sun, D., Lu, W., Le, D., Ma, Q., Aminpour, M., Ortigoza, M.A., Bobek, S., Mann, J., Wyrick, J., Rahman, T.S., and Bartels, L.: An MoSx structure with high affinity for adsorbate interaction. Angew. Chem. Int. Ed. 51, 10284 (2012).Google Scholar
Mohan, V.M., Bin, H., and Chen, W.: Enhancement of electrochemical properties of MoO3 nanobelts electrode using PEG as surfactant for lithium battery. J. Solid State Electrochem. 14, 1769 (2010).Google Scholar
Paek, S.M., Kang, J.H., Jung, H., Hwang, S.J., and Choy, J.H.: Enhanced lithium storage capacity and cyclic performance of nanostructured TiO2–MoO3 hybrid electrode. Chem. Commun. 48, 7536 (2009).Google Scholar
Zhang, X., Luster, B., Church, A., Muratore, C., Voevodin, A.A., Kohli, P., Aouadi, S., and Talapatra, S.: Carbon nanotube-MoS2 composites as solid lubricants. Appl. Mater. Interface 1, 735 (2009).Google Scholar
Rosentsveig, R., Margolin, A., Gorodnev, A., Popovitz-Biro, R., Feldman, Y., Rapoport, L., Novema, Y., Naveh, G., and Tenne, R.: Synthesis of fullerene-like MoS2 nanoparticles and their tribological behavior. J. Mater. Chem. 19, 4368 (2009).Google Scholar
Pol, V.G., Pol, S.V., and Gedanken, A.: Micro to nano conversion: A one-step, environmentally friendly, solid state, bulk fabrication of WS2 and MoS2 nanoplates. Cryst. Growth Des. 8, 1126 (2008).CrossRefGoogle Scholar
Zak, A., Feldman, Y., Lyakhovitskaya, V., Leitus, G., Popovitz-Biro, R., Wachtel, E., Cohen, H., Reich, S., and Tenne, R.: Alkali metal intercalated fullerene-like MS2 (M = W, Mo) nanoparticles and their properties. J. Am. Chem. Soc. 124, 4747 (2002).Google Scholar
Remskar, M., Skraba, Z., Stadelmann, P., and Levy, F.: Structural stabilization of new compounds: MoS2 and WS2 micro- and nanotubes alloyed with gold and silver. Adv. Mater. 12, 814 (2000).3.0.CO;2-0>CrossRefGoogle Scholar
Chhowalla, M., Gehan, A., and Amaratunga, J.: Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 407, 164 (2000).Google Scholar
Hu, B., Mai, L., Chen, W., and Yang, F.: From MoO3 nanobelts to MoO2 nanorods: Structure transformation and electrical transport. ACS Nano 3, 478 (2009).CrossRefGoogle ScholarPubMed
Wang, Z., Wang, H., Yang, C., and Wu, J.: Synthesis of molybdenum oxide hollow microspheres by ethanol and PEG assisting hydrothermal process. Mater. Lett. 64, 2170 (2010).Google Scholar
Xia, T., Li, Q., Liu, X., Meng, J., and Cao, X.: Morphology-controllable synthesis and characterization of single-crystal molybdenum trioxide. J. Phys. Chem. B 110, 2006 (2006).Google Scholar
Tian, Y., Zhao, X., Shen, L., Meng, F., Tang, L., Deng, Y., and Wang, Z.: Synthesis of amorphous MoS2 nanospheres by hydrothermal reaction. Mater. Lett. 60, 527 (2006).Google Scholar
Bar-Sadan, M., Enyashin, A.N., Gemming, S., Popovitz-Biro, R., Hong, S.Y., Yehiam, P., Tenne, R., and Seifert, G.: Structure and stability of molybdenum sulfide fullerenes. J. Phys. Chem. B 110, 25399 (2006).Google Scholar
Wen, Z.H., Wang, Q., and Li, J.H.: Electrochemical behavior of -MoO3 nanorods as cathode materials for rechargeable lithium batteries. Nanosci. Nanotechnol. 6, 2117 (2006).Google Scholar
Dury, F., Misplon, V., and Gaigneaux, E.M.: Probing the reduction state of Mo oxide catalysts by the deoxygenation of carboxylic acid. Catal. Today 91, 111 (2004).Google Scholar
Chen, D., Liu, M., Yin, L., Li, T., Yang, Z., Li, X., Fan, B., Wang, H., Zhang, R., Li, Z., Xu, H., Lu, H., Yang, D., Sun, J., and Gao, L.: Single-crystalline MoO3 nanoplates: Topochemical synthesis and enhanced ethanol-sensing performance. J. Mater. Chem. 21, 9332 (2011).CrossRefGoogle Scholar
Mai, L.Q., Hu, B., Chen, W., Qi, Y.Y., Lao, C.S., Yang, R.S., Dai, Y., and Wang, Z.L.: Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Adv. Mater. 19, 3712 (2007).CrossRefGoogle Scholar
Zhou, J., Xu, N.S., Deng, S.Z., Chen, J., She, J. C., and Wang, Z.: Large-area nanowire arrays of molybdenum and molybdenum oxides: Synthesis and field emission properties. Adv. Mater. 15, 1835 (2003).Google Scholar
Siciliano, T., Tepore, A., Filippo, E., Micocci, G., and Tepore, M.: Characteristics of molybdenum trioxide nanobelts prepared by thermal evaporation technique. Mater. Chem. Phys. 114, 687 (2009).CrossRefGoogle Scholar
Kalantar-zadeh, K., Tang, J., Wang, M., Wang, K.L., Shailos, A., Galatsis, K., Kojima, R., Strong, V., Lech, A., Wlodarski, W., and Kaner, R.B.: Synthesis of nanometre-thick MoO3 sheets. Nanoscale 2, 429 (2010).Google Scholar
Krishnan, C.V., Chen, J., Burger, C., and Chu, B.: Polymer-assisted growth of molybdenum oxide whiskers via a sonochemical process. J. Phys. Chem. B 110, 20182 (2006).Google Scholar
Pan, G., Guo, Q., Zhao, Z., Zhouwang, S., Qin, Y., and Wang, L.: Tribological properties of solid multilayer composite coatings in dry rolling contact. Tribol. Int. 44, 789 (2011).Google Scholar
Zhou, X., Wu, D., Shi, H., Fu, X., Hu, Z., Wang, X., and Yan, F.: Study on the tribological properties of surfactant-modified MoS2 micrometer spheres as an additive in liquid paraffin. Tribol. Int. 40, 863 (2007).Google Scholar
Farag, H.: Effect of sulfidation temperatures on the bulk structures of various molybdenum precursors. Energy Fuels 16, 944 (2002).CrossRefGoogle Scholar
Okamoto, Y., Kato, A., Usman, , Rinaldi, N., Fujikawa, T., Koshika, H., Hiromitsu, I., and Kubota, T.: Effect of sulfidation temperature on the intrinsic activity of Co–MoS2 and Co–WS2 hydrodesulfurization catalysts. J. Catal. 265, 216 (2009).Google Scholar
Fang, F., Shu, Y., Wang, A., and Zhang, T.: Green synthesis and characterization of anisotropic uniform single-crystal α-MoO3 nanostructures. J. Phys. Chem. C 111, 2401 (2007).Google Scholar
Zakharova, G.S., Taeschner, C., Volkov, V.L., Hellman, I., Klingeler, R., Leonhardt, A., and Buechner, B.: MoO3−δ nanorods: Synthesis, characterization and magnetic properties. Solid State Sci. 9, 1028 (2007).Google Scholar
Pua, F.L., China, C.H., Zakaria, S., Liew, T., Yarmo, M.A., and Huang, N.M.: Simple hydrothermal route for synthesizing transition metal sulfide nanoparticle. Sains Malaysiana 39, 243 (2010).Google Scholar
Hansen, L.P., Ramasse, Q.M., Kisielowski, C., Brorson, M., Johnson, E., Topsøe, H., and Helveg, S.: Atomic-scale edge structures on industrial-style MoS2 nanocatalysts. Angew. Chem. Int. Ed. 50, 10153 (2011).Google Scholar
Supplementary material: File

Sibi et al. supplementary material

Supplementary data

Download Sibi et al. supplementary material(File)
File 171.5 KB