Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T09:53:23.169Z Has data issue: false hasContentIssue false

Microstructural variations as a function of δ in La2−xSrxNiO4+δ

Published online by Cambridge University Press:  03 March 2011

M.J. Sayagués
Affiliation:
Instituto de Magnetismo Aplicado, Apdo. 155, Las Rozas, 28230 Madrid, and Departamento de Química Inorgánica, Facultad de Químicas, Universidad Complutense, 28040 Madrid, Spai
A. Caneiro*
Affiliation:
Instituto de Magnetismo Aplicado, Apdo. 155, Las Rozas, 28230 Madrid, Spai
J.M. González-Calbet
Affiliation:
Instituto de Magnetismo Aplicado, Apdo. 155, Las Rozas, 28230 Madrid, and Departamento de Química Inorgánica, Facultad de Químicas, Universidad Complutense, 28040 Madrid, Spai
M. Vallet-Regí
Affiliation:
Instituto de Magnetismo Aplicado, Apdo. 155, Las Rozas, 28230 Madrid, and Departmento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

A microstructural characterization of the La2−xSrxNiO4+δ (0 ⋚ x ⋚ 1) system, prepared with accurate control of the oxygen content, has been performed. The electron diffraction study shows the evolution of the accommodation of compositional variations as a function of δ. For δ > 0.06, interstitial oxygens are ordered, leading to new K2NiF4 superstructural types. Samples with δ < 0.06 accommodate the nonstoichiometry by means of random distribution of anionic vacancies.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jorgensen, J. D., Dabrowski, B., Pei, S., Hinks, D. G., Soderholm, L., Morosin, B., Schirber, J. E., Venturini, E. L., and Ginley, D. S., Phys. Rev. B 38, 11337 (1988).CrossRefGoogle Scholar
2Bishop, A. R., Martin, R. L., Müller, K. A., and Tesanovic, Z., Z. Phys. B 76, 17 (1989).CrossRefGoogle Scholar
3Buttrey, D. J., Ganguly, P., Honig, J. M., Rao, C. N. R., Schartman, R. R., and Sibbanna, G. N., J. Solid State Chem. 74, 233 (1988).CrossRefGoogle Scholar
4Medarde, M., Batlle, X., Granados, X., Obradors, X., Rodríguez, J., Fontcuberta, J., Vallet, M., González, J., Alonso, J., Sayagués, M. J., Martinez, J. L., and Fontaine, A., Electronic Properties of High Temperature Superconductors, edited by Huzmany, H. (Springer-Verlag, Berlin, 1990), p. 166.Google Scholar
5Torrance, J. B., Tokura, Y., Nazzal, A. Y., Bezinge, A., Huang, T. C., and Parkin, S. S. P., Phys. Rev. Lett. 62, 2317 (1988).Google Scholar
6Jorgensen, J. D., Dabrowski, B., Pei, S., Richards, D. R., and Hinks, D. G., Phys. Rev. B 40, 2187 (1989).CrossRefGoogle Scholar
7Rodríguez-Carvajal, J., Fernández, M. T., and Martínez, J. L., J. Phys. Conds. Matter. 3, 3215 (1991).CrossRefGoogle Scholar
8Hiroi, Z., Obata, T., Takano, M., and Bando, Y., Phys. Rev. B 41, 11665 (1990).CrossRefGoogle Scholar
9Demourges, A., Weill, F., Grenier, J. C., Wattiaux, A., and Pouchard, M., Physica C 192, 425 (1992).CrossRefGoogle Scholar
10Otero-Díaz, L. C., Landa, A. R., Fernández, F., Saez-Puche, R., Withers, R., and Hyde, B. G., J. Solid State Chem. 97, 443 (1992).CrossRefGoogle Scholar