Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T00:02:08.242Z Has data issue: false hasContentIssue false

Impact of mid- to late Holocene precipitation changes on vegetation across lowland tropical South America: a paleo-data synthesis

Published online by Cambridge University Press:  10 November 2017

Richard J. Smith*
Affiliation:
University of Reading, Centre for Past Climate Change and Department of Geography and Environmental Science, School of Archaeology, Geography and Environmental Science (SAGES), Whiteknights, PO Box 227, Reading RG6 6AB, United Kingdom
Francis E. Mayle
Affiliation:
University of Reading, Centre for Past Climate Change and Department of Geography and Environmental Science, School of Archaeology, Geography and Environmental Science (SAGES), Whiteknights, PO Box 227, Reading RG6 6AB, United Kingdom
*
*Corresponding author at: University of Reading, Centre for Past Climate Change and Department of Geography and Environmental Science, School of Archaeology, Geography and Environmental Science (SAGES), Whiteknights, PO Box 227, Reading RG6 6AB, United Kingdom. E-mail address: r.smith3@pgr.reading.ac.uk (R. Smith).

Abstract

A multi-proxy paleo-data synthesis of 110 sites is presented, exploring the impact of mid- to late Holocene precipitation changes upon vegetation across Southern Hemisphere tropical South America. We show that the most significant vegetation changes occurred in southwest Amazonia and southeast Brazil, regions reliant on precipitation derived from the South American summer monsoon (SASM). A drier mid-Holocene in these regions, linked to a weaker SASM, favored more open vegetation (savannah/grasslands) than present, while increased late-Holocene precipitation drove expansion of humid forests (e.g., evergreen tropical forest in southwest Amazonia, Araucaria forests in southeast Brazil). The tropical forests of central, western and eastern Amazonia remained largely intact throughout this 6000-year period. Northeastern Brazil’s climate is “antiphased” with the rest of tropical South America, but a lack of paleo-data limits our understanding of how vegetation responded to a wetter (drier) mid-(late) Holocene. From this paleo-data perspective, we conclude that ecotonal forests already close to their climatic thresholds are most vulnerable to predicted future drought, but the forest biome in the core of Amazonia is likely to be more resilient. Of greater concern are widespread deforestation and uncontrolled anthropogenic burning, which will decrease ecosystem resilience, making them more vulnerable than they might be without current anthropogenic pressures.

Type
Tribute to Daniel Livingstone and Paul Colinvaux
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Absy, M.L., Cleef, A., Fournier, M., Martin, L., Servant, M., Sifeddine, A., Ferreira da Silva, M., et al 1991. Mise en évidence de quatre phases d’ouverture de la forêt dense dans le Sud-Est de l’Amazonie au cours des 60 000 dernières années: première comparaison avec d’autres régions tropicales. Comptes rendus de l’Académie des Sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de la Terre 312, 673678.Google Scholar
Absy, M.L., Cleef, A.M., D’Apolito, C., da Silva, M.F.F., 2014. Palynological differentiation of savanna types in Carajás, Brazil (southeastern Amazonia). Palynology 38, 7889.CrossRefGoogle Scholar
Adeney, J.M., Christensen, N.L., Vicentini, A., Cohn-Haft, M., 2016. White-sand Ecosystems in Amazonia. Biotropica 48, 723.CrossRefGoogle Scholar
Alexandre, A., Meunier, J.D., Mariotti, A., Soubiès, F., 1999. Late Holocene phytolith and carbon-isotope record from a latosol at Salitre, south-central Brazil. Quaternary Research 51, 187194.CrossRefGoogle Scholar
Andrade-Lima, D. de, 1982. Present-day forest refuges in northeastern Brazil. In Prance, G.T. (Ed.), Biological Diversification in the Tropics. Columbia University Press, New York, pp. 245251.Google Scholar
Baker, P.A., Fritz, S.C., 2015. Nature and causes of Quaternary climate variation of tropical South America. Quaternary Science Reviews 124, 3147.CrossRefGoogle Scholar
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D., Broda, J.P., 2001. The history of South American tropical precipitation for the past 25,000 years. Science 291, 640643.CrossRefGoogle ScholarPubMed
Barberi, M., Salgado-Labouriau, M.L., Suguio, K., 2000. Paleovegetation and paleoclimate of “Vereda de Águas Emendadas,” central Brazil. Journal of South American Earth Sciences 13, 241254.CrossRefGoogle Scholar
Batalha-Filho, H., Fjeldså, J., Fabre, P.H., Miyaki, C.Y., 2013. Connections between the Atlantic and the Amazonian forest avifaunas represent distinct historical events. Journal of Ornithology 154, 4150.CrossRefGoogle Scholar
Behling, H., 1995a. A high resolution Holocene pollen record from Lago do Pires, SE Brazil: vegetation, climate and fire history. Journal of Paleolimnology 14, 253268.CrossRefGoogle Scholar
Behling, H., 1995b. Investigations into the late Pleistocene and Holocene history of vegetation and climate in Santa Catarina (S Brazil). Vegetation History and Archaeobotany 4, 127152.CrossRefGoogle Scholar
Behling, H., 1997a. Late Quaternary vegetation, climate and fire history of the Araucaria forest and campos region from Serra Campos Gerais, Paraná State (South Brazil). Review of Palaeobotany and Palynology 97, 109121.CrossRefGoogle Scholar
Behling, H., 1997b. Late Quaternary vegetation, climate and fire history from the tropical mountain region of Morro de Itapeva, SE Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 129, 407422.CrossRefGoogle Scholar
Behling, H., 1998. Late Quaternary vegetational and climatic changes in Brazil. Review of Palaeobotany and Palynology 99, 143156.CrossRefGoogle Scholar
Behling, H., 2003. Late glacial and Holocene vegetation, climate and fire history inferred from Lagoa Nova in the southeastern Brazilian lowland. Vegetation History and Archaeobotany 12, 263270.CrossRefGoogle Scholar
Behling, H., 2007. Late Quaternary vegetation, fire and climate dynamics of Serra do Araçatuba in the Atlantic coastal mountains of Paraná State, southern Brazil. Vegetation History and Archaeobotany 16, 7785.CrossRefGoogle Scholar
Behling, H., Arz, H.W., Pätzold, J., Wefer, G., 2000. Late Quaternary vegetational and climate dynamics in northeastern Brazil, inferences from marine core GeoB 3104-1. Quaternary Science Reviews 19, 981994.CrossRefGoogle Scholar
Behling, H., Bauermann, S.G., Pereira Neves, P.C., 2001a. Holocene environmental changes in the São Francisco de Paula region, southern Brazil. Journal of South American Earth Sciences 14, 631639.CrossRefGoogle Scholar
Behling, H., Berrio, J.C., Hooghiemstra, H., 1999. Late Quaternary pollen records from the middle Caquetá river basin in central Colombian Amazon. Palaeogeography, Palaeoclimatology, Palaeoecology 145, 193213.CrossRefGoogle Scholar
Behling, H., Cohen, M.C.L., Lara, R.J., 2001b. Studies on Holocene mangrove ecosystem dynamics of the Bragança Peninsula in northeastern Pará, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 167, 225242.CrossRefGoogle Scholar
Behling, H., da Costa, M.L., 2000. Holocene Environmental Changes from the Rio Curuá Record in the Caxiuanã Region, Eastern Amazon Basin. Quaternary Research 53, 369377.CrossRefGoogle Scholar
Behling, H., da Costa, M.L., 2001. Holocene vegetational and coastal environmental changes from the Lago Crispim record in northeastern Pará State, eastern Amazonia. Review of Palaeobotany and Palynology 114, 145155.CrossRefGoogle ScholarPubMed
Behling, H., Dupont, L., Safford, H.D., Wefer, G., 2007. Late Quaternary vegetation and climate dynamics in the Serra da Bocaina, southeastern Brazil. Quaternary International 161: 2231.CrossRefGoogle Scholar
Behling, H., Keim, G., Irion, G., Junk, W., Nunes de Mello, J., 2001cHolocene environmental changes in the Central Amazon Basin inferred from Lago Calado (Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 173, 87101.CrossRefGoogle Scholar
Behling, H., Negrelle, R.R.B., 2001. Tropical Rain Forest and Climate Dynamics of the Atlantic Lowland, Southern Brazil, during the Late Quaternary. Quaternary Research 56, 383389.CrossRefGoogle Scholar
Behling, H., Negrelle, R.R.B., Colinvaux, P.A., 1997. Modern pollen rain data from the tropical Atlantic rain forest, Reserva Volta Velha, South Brazil. Review of Palaeobotany and Palynology 97, 287299.CrossRefGoogle Scholar
Behling, H., Pillar, V.D., 2007. Late Quaternary vegetation, biodiversity and fire dynamics on the southern Brazilian highland and their implication for conservation and management of modern Araucaria forest and grassland ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences 362, 243251.CrossRefGoogle ScholarPubMed
Behling, H., Pillar, V.D., Bauermann, S.G., 2005. Late Quaternary grassland (Campos), gallery forest, fire and climate dynamics, studied by pollen, charcoal and multivariate analysis of the São Francisco de Assis core in western Rio Grande do Sul (southern Brazil). Review of Palaeobotany and Palynology 133, 235248.CrossRefGoogle Scholar
Behling, H., Pillar, V.D., Orlóci, L., Bauermann, S.G., 2004. Late Quaternary Araucaria forest, grassland (Campos), fire and climate dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 203: 277297.CrossRefGoogle Scholar
Behling, H., Safford, H.D., 2010. Late‐glacial and Holocene vegetation, climate and fire dynamics in the Serra dos Órgãos, Rio de Janeiro State, southeastern Brazil. Global Change Biology 16, 16611671.CrossRefGoogle Scholar
Berger, A., 1992. Orbital Variations and Insolation Database. IGBP PAGES/World Data Center-A for Paleoclimatology Data Contribution Series #92-007. NOAA/NGDC Paleoclimatology Program, Boulder, Colorado.Google Scholar
Berger, A., Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297317.CrossRefGoogle Scholar
Bernal, J.P., Cruz, F.W., Stríkis, N.M., Wang, X., Deininger, M., Catunda, M.C.A., Ortega-Obregón, C., Cheng, H., Edwards, R.L., Auler, A.S., 2016. High-resolution Holocene South American monsoon history recorded by a speleothem from Botuverá Cave, Brazil. Earth and Planetary Science Letters 450, 186196.CrossRefGoogle Scholar
Bitencourt, A., Krauspenhar, P.M., 2006. Possible prehistoric anthropogenic effect on Araucaria angustifolia (Bert.) O. Kuntze expansion during the Late Holocene. Revista Brasileira de Paleontologia 9, 109116.CrossRefGoogle Scholar
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.CrossRefGoogle Scholar
Boisier, J.P., Ciais, P., Ducharne, A., Guimberteau, M., 2015. Projected strengthening of Amazonian dry season by constrained climate model simulations. Nature Climate Change 5, 656660.CrossRefGoogle Scholar
Boutton, T.W., 1996. Stable carbon isotopes ratios of soil organic matter and their use of indicators of vegetation and climate change. In Boutton, T.W., Yamasaki, S. (Eds.), Mass Spectrometry of Soils. Marcel Dekker, New York, pp. 4782.Google Scholar
Braconnot, P., Harrison, S.P., Otto-Bliesner, B., Abe-Ouchi, A., Jungclaus, J., Peterschmitt, J.Y., 2011. The Paleoclimate Modeling Intercomparison Project contribution to CMIP5. CLIVAR Exchanges 16, 1519.Google Scholar
Brugger, S.O., Gobet, E., van Leeuwen, J.F.N., Ledru, M.-P., Colombaroli, D., van der Knaap, W.O., Lombardo, U., et al 2016. Long-term man-environment interactions in the Bolivian Amazon: 8000 years of vegetation dynamics. Quaternary Science Reviews 132, 114128.CrossRefGoogle Scholar
Burbridge, R.E., Mayle, F.E., Killeen, T.J., 2004. Fifty-thousand-year vegetation and climate history of Noel Kempff Mercado National Park, Bolivian Amazon. Quaternary Research 61, 215230.CrossRefGoogle Scholar
Bush, M.B., Colinvaux, P.A., 1988. A 7000-year pollen record from the Amazon lowlands, Ecuador. Vegetatio 76, 141154.CrossRefGoogle Scholar
Bush, M.B., Correa-Metrio, A., McMichael, C.N.H., Sully, S., Shadik, C.R., Valencia, B.G., Guilderson, T., Steinitz-Kannan, M., Overpeck, J.T., 2016. A 6900-year history of landscape modification by humans in lowland Amazonia. Quaternary Science Reviews 141, 5264.CrossRefGoogle Scholar
Bush, M.B., De Oliveira, P.E., Colinvaux, P.A., Miller, M.C., Moreno, J.E., 2004a. Amazonian paleoecological histories: one hill, three watersheds. Palaeogeography, Palaeoclimatology, Palaeoecology 214, 359393.CrossRefGoogle Scholar
Bush, M.B., Miller, M.C., De Oliveira, P.E., Colinvaux, P.A., 2000. Two histories of environmental change and human disturbance in eastern lowland Amazonia. The Holocene 10, 543553.CrossRefGoogle Scholar
Bush, M.B., Rivera, R., 2001. Reproductive ecology and pollen representation among neotropical trees. Global Ecology and Biogeography 10, 359367.CrossRefGoogle Scholar
Bush, M.B., Silman, M.R., De Toledo, M.B., Listopad, C., Gosling, W.D., Williams, C., De Oliveira, P.E., Krisel, C., 2007a. Holocene fire and occupation in Amazonia: records from two lake districts. Philosophical Transactions of the Royal Society B: Biological Sciences 362, 209218.CrossRefGoogle ScholarPubMed
Bush, M.B., Silman, M.R., Listopad, C.M.C.S., 2007b. A regional study of Holocene climate change and human occupation in Peruvian Amazonia. Journal of Biogeography 34, 13421356.CrossRefGoogle Scholar
Bush, M.B., Silman, M.R., Urrego, D.H., 2004b. 48,000 years of climate and forest change in a biodiversity hot spot. Science 303, 827829.CrossRefGoogle Scholar
Calegari, M.R., Madella, M., Vidal-Torrado, P., Pessenda, L.C.R., Marques, F.A., 2013. Combining phytoliths and δ13C matter in Holocene palaeoenvironmental studies of tropical soils: an example of an Oxisol in Brazil. Quaternary International 287, 4755.CrossRefGoogle Scholar
Carson, J.F., Mayle, F.E., Whitney, B.S., Iriarte, J., Soto, J.D., 2016. Pre-Columbian ring ditch construction and land use on a “chocolate forest island” in the Bolivian Amazon. Journal of Quaternary Science 31, 337347.CrossRefGoogle Scholar
Carson, J.F., Watling, J., Mayle, F.E., Whitney, B.S., Iriarte, J., Prümers, H., Soto, J.D., 2015. Pre-Columbian land use in the ring-ditch region of the Bolivian Amazon. The Holocene 25, 12851300.CrossRefGoogle Scholar
Carson, J.F., Whitney, B.S., Mayle, F.E., Iriarte, J., Prümers, H., Soto, J.D., Watling, J., 2014. Environmental impact of geometric earthwork construction in pre-Columbian Amazonia. Proceedings of the National Academy of Sciences 111, 1049710502.CrossRefGoogle ScholarPubMed
Carvalho, L., Jones, C., Liebmann, B., 2004. The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. Journal of Climate 17, 88108.2.0.CO;2>CrossRefGoogle Scholar
Cassino, R.F., Meyer, K.E.B., 2013. Reconstituição paleoambiental do Chapadão dos Gerais (Quaternário tardio) a partir da análise palinológica da Vereda Laçador, Minas Gerais, Brasil. Revista Brasileira de Paleontologia 16, 127146.CrossRefGoogle Scholar
Chen, T.-C., Weng, S.-P., Schubert, S., 1999. Maintenance of austral summertime upper-tropospheric circulation over tropical South America: the Bolivian High–Nordeste low system. Journal of the Atmospheric Sciences 56, 20812100.2.0.CO;2>CrossRefGoogle Scholar
Cheng, H., Sinha, A., Cruz, F.W., Wang, X., Edwards, R.L., d’Horta, F.M., Ribas, C.C., Vuille, M., Stott, L.D., Auler, A.S., 2013. Climate change patterns in Amazonia and biodiversity. Nature Communications 4, 1411.CrossRefGoogle ScholarPubMed
Cohen, M.C.L., Rossetti, D., de, F., Pessenda, L.C.R., Friaes, Y.S., Oliveira, P.E., 2014. Late Pleistocene glacial forest of Humaitá—Western Amazonia. Palaeogeography, Palaeoclimatology, Palaeoecology 415, 3747.CrossRefGoogle Scholar
Colinvaux, P.A., De Oliveira, P.E., Moreno, J.E., Miller, M.C., 1996. A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science 274, 8588.CrossRefGoogle Scholar
Cordeiro, R.C., Turcq, B., Suguio, K., Oliveira da Silva, A., Sifeddine, A., Volkmer-Ribeiro, C., 2008. Holocene fires in East Amazonia (Carajás), new evidences, chronology and relation with paleoclimate. Global and Planetary Change 61, 4962.CrossRefGoogle Scholar
Costa, L.P., 2003. The historical bridge between the Amazon and the Atlantic Forest of Brazil: a study of molecular phylogeography with small mammals. Journal of Biogeography 30, 7186.CrossRefGoogle Scholar
Cowling, S.A., Shin, Y., 2006. Simulated ecosystem threshold responses to co-varying temperature, precipitation and atmospheric CO2 within a region of Amazonia. Global Ecology and Biogeography 15, 553566.CrossRefGoogle Scholar
Cox, P.M., Betts, R.A., Collins, M., Harris, P.P., Huntingford, C., Jones, C.D., 2004. Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theoretical and Applied Climatology 78, 137156.CrossRefGoogle Scholar
Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A., Totterdell, I.J., 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184187.CrossRefGoogle Scholar
Cruz, F.W., Burns, S.J., Karmann, I., Sharp, W.D., Vuille, M., Cardoso, A.O., Ferrari, J.A., Dias, P.L.S., Viana, O., 2005. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434, 6366.CrossRefGoogle Scholar
Cruz, F.W., Burns, S.J., Karmann, I., Sharp, W.D., Vuille, M., Ferrari, J.A., 2006. A stalagmite record of changes in atmospheric circulation and soil processes in the Brazilian subtropics during the Late Pleistocene. Quaternary Science Reviews 25, 27492761.CrossRefGoogle Scholar
Cruz, F.W., Vuille, M., Burns, S.J., Wang, X., Cheng, H., Werner, M., Edwards, R.L., Karmann, I., Auler, A.S., Nguyen, H., 2009. Orbitally driven east-west antiphasing of South American precipitation. Nature Geoscience 2, 210214.CrossRefGoogle Scholar
Davis, M.B., 2000. Palynology after Y2K - Understanding the source area of pollen in sediments. Annual Review of Earth and Planetary Sciences 28, 118.CrossRefGoogle Scholar
de Freitas, H.A., Pessenda, L.C.R., Aravena, R., Gouveia, S.E.M., de Souza Ribeiro, A., Boulet, R., 2001. Late Quaternary vegetation dynamics in the southern Amazon Basin inferred from carbon isotopes in soil organic matter. Quaternary Research 55, 3946.CrossRefGoogle Scholar
De Oliveira, P.E., Barreto, A.M.F., Suguio, K., 1999. Late Pleistocene/Holocene climatic and vegetational history of the Brazilian caatinga: the fossil dunes of the middle São Francisco River. Palaeogeography, Palaeoclimatology, Palaeoecology 152, 319337.CrossRefGoogle Scholar
Dickau, R., Whitney, B.S., Iriarte, J., Mayle, F.E., Soto, J.D., Metcalfe, P., Street-Perrott, F.A., Loader, N.J., Ficken, K.J., Killeen, T.J., 2013. Differentiation of neotropical ecosystems by modern soil phytolith assemblages and its implications for palaeoenvironmental and archaeological reconstructions. Review of Palaeobotany and Palynology 193, 123.CrossRefGoogle Scholar
Doughty, C.E., Metcalfe, D.B., Girardin, C.A.J., Amézquita, F.F., Cabrera, D.G., Huasco, W.H., Silva-Espejo, J.E., et al 2015. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 7882.CrossRefGoogle ScholarPubMed
Duffy, P.B., Brando, P.M., Asner, G.P., Field, C.B., 2015. Projections of future meteorological drought and wet periods in the Amazon. Proceedings of the National Academy of Sciences 112, 1317213177.CrossRefGoogle ScholarPubMed
Dümig, A., Schad, P., Rumpel, C., Dignac, M.-F., Kögel-Knabner, I., 2008. Araucaria forest expansion on grassland in the southern Brazilian highlands as revealed by 14C and δ13C studies. Geoderma 145, 143157.CrossRefGoogle Scholar
Eltahir, E., Bras, R.L., 1994. Precipitation recycling in the Amazon basin. Quaternary Journal of the Royal Meteorological Society 120, 861880.CrossRefGoogle Scholar
Enters, D., Behling, H., Mayr, C., Dupont, L., Zolitschka, B., 2010. Holocene environmental dynamics of southeastern Brazil recorded in laminated sediments of Lago Aleixo. Journal of Paleolimnology 44, 265277.CrossRefGoogle Scholar
Feldpausch, T.R., Phillips, O.L., Brienen, R.J.W., Gloor, E., Lloyd, J., Lopez-Gonzalez, G., Monteagudo-Mendoza, A., et al 2016. Amazon forest response to repeated droughts. Biogeosciences 30, 964982.Google Scholar
Flantua, S.G.A., Hooghiemstra, H., Grimm, E.C., Behling, H., Bush, M.B., González-Arango, C., Gosling, W.D., et al 2015. Updated site compilation of the Latin American Pollen Database. Review of Palaeobotany and Palynology 223, 104115.CrossRefGoogle Scholar
Flantua, S.G.A., Hooghiemstra, H., Vuille, M., Behling, H., Carson, J.F., Gosling, W.D., Hoyos, I., et al 2016. Climate variability and human impact in South America during the last 2000 years: synthesis and perspectives from pollen records. Climate of the Past 12, 483523.CrossRefGoogle Scholar
Garreaud, R.D., Vuille, M., Compagnucci, R., Marengo, J.A., 2009. Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology 281, 180195.CrossRefGoogle Scholar
Gentry, A.H., 1995. Diversity and floristic composition of neotropical dry forests. In Bullock, S.H., Mooney, H.A., Medina, E. (Eds.), Seasonally Dry Tropical Forests. Cambridge University Press, Cambridge, pp. 146194.CrossRefGoogle Scholar
Gosling, W.D., Mayle, F.E., Tate, N.J., Killeen, T.J., 2005. Modern pollen-rain characteristics of tall terra firme moist evergreen forest, southern Amazonia. Quaternary Research 64, 284297.CrossRefGoogle Scholar
Gosling, W.D., Mayle, F.E., Tate, N.J., Killeen, T.J., 2009. Differentiation between Neotropical rainforest, dry forest, and savannah ecosystems by their modern pollen spectra and implications for the fossil pollen record. Review of Palaeobotany and Palynology 153, 7085.CrossRefGoogle Scholar
Gouveia, S.E.M., Pessenda, L.C.R., Aravena, R., Boulet, R., Scheel-Ybert, R., Bendassolli, J.A., Ribeiro, A.S., de Freitas, H.A., 2002. Carbon isotopes in charcoal and soils in studies of paleovegetation and climate changes during the late Pleistocene and the Holocene in the southeast and centerwest regions of Brazil. Global and Planetary Change 33, 95106.CrossRefGoogle Scholar
Guimarães, J.T.F., Cohen, M.C.L., França, M.C., Alves, I.C.C., Smith, C.B., Pessenda, L.C.R., Behling, H., 2013a. An integrated approach to relate Holocene climatic, hydrological, morphological and vegetation changes in the southeastern Amazon region. Vegetation History and Archaeobotany 22, 185198.CrossRefGoogle Scholar
Guimarães, J.T.F., Cohen, M.C.L., França, M.C., Pessenda, L.C.R., Behling, H., 2013b. Morphological and vegetation changes on tidal flats of the Amazon Coast during the last 5000 cal. yr BP. The Holocene 23, 528543.CrossRefGoogle Scholar
Guimarães, J.T.F., Cohen, M.C.L., Pessenda, L.C.R., França, M.C., Smith, C.B., Nogueira, A.C.R., 2012. Mid- and late-Holocene sedimentary process and palaeovegetation changes near the mouth of the Amazon River. The Holocene 22, 359370.CrossRefGoogle Scholar
Guimarães, J.T.F., Souza-Filho, P.W.M., Alves, R., de Souza, E.B., da Costa, F.R., Reis, L.S., Sahoo, P.K., et al 2014. Source and distribution of pollen and spores in surface sediments of a plateau lake in southeastern Amazonia. Quaternary International 352, 181196.CrossRefGoogle Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., Röhl, U., 2001. Southward migration of the intertropical convergence zone through the Holocene. Science 293, 13041308.CrossRefGoogle ScholarPubMed
Hermanowski, B., da Costa, M.L., Behling, H., 2012a. Environmental changes in southeastern Amazonia during the last 25,000yr revealed from a paleoecological record. Quaternary Research 77, 138148.CrossRefGoogle Scholar
Hermanowski, B., da Costa, M.L., Behling, H., 2014. Possible linkages of palaeofires in southeast Amazonia to a changing climate since the Last Glacial Maximum. Vegetation History and Archaeobotany, 114.Google Scholar
Hermanowski, B., da Costa, M.L., Carvalho, A.T., Behling, H., 2012b. Palaeoenvironmental dynamics and underlying climatic changes in southeast Amazonia (Serra Sul dos Carajás, Brazil) during the late Pleistocene and Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 365–366, 227246.CrossRefGoogle Scholar
Hogg, A.G., Hua, Q., Blackwell, P.G., Niu, M., Buck, C.E., 2013. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55, 18891903.CrossRefGoogle Scholar
Horák, I., Vidal-Torrado, P., Silva, A.C., Pessenda, L.C.R., 2011. Pedological and isotopic relations of a highland tropical peatland, Mountain Range of the Espinhaço Meridional (Brazil). Revista Brasileira de Ciência do Solo 35, 4152.CrossRefGoogle Scholar
Horbe, A.M.C., Behling, H., Nogueira, A.C.R., Mapes, R., 2011. Environmental changes in the western Amazônia: morphological framework, geochemistry, palynology and radiocarbon dating data. Anais de Academia Brasileira de Ciências 83, 863874.CrossRefGoogle ScholarPubMed
Hueck, K., 1953. Distribuição e habitat natural do Pinheiro do Paraná (Araucaria angustifolia). Boletim da Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo. Botânica 10, 124.Google Scholar
Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Wolff, D.B., Adler, R.F., Gu, G., Hong, Y., Bowman, K.P., Stocker, E.F., 2007. The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology 8, 3855.CrossRefGoogle Scholar
Huntingford, C., Zelazowski, P., Galbraith, D.R., Mercado, L.M., Sitch, S., Fisher, R.A., Lomas, M., et al 2013. Simulated resilience of tropical rainforests to CO2-induced climate change. Nature Geoscience 6, 268273.CrossRefGoogle Scholar
Iriarte, J., Behling, H., 2007. The expansion of Araucaria forest in the southern Brazilian highlands during the last 4000 years and its implications for the development of the Taquara/Itararé. Environmental Archaeology 12, 115127.CrossRefGoogle Scholar
Iriarte, J., DeBlasis, P., Souza, J.G., Corteletti, R., 2016. Emergent complexity, changing landscapes, and spheres of interaction in southeastern South America during the middle and late Holocene. Journal of Archaeological Research 25, 251313.CrossRefGoogle Scholar
Irion, G., Bush, M.B., Nunes de Mello, J.A., Stüben, D., Neumann, T., Müller, G., Morais de, J.O., Junk, J.W., 2006. A multiproxy palaeoecological record of Holocene lake sediments from the Rio Tapajós, eastern Amazonia. Palaeogeography, Palaeoclimatology, Palaeoecology 240, 523535.CrossRefGoogle Scholar
Jeske-Pieruschka, V., Behling, H., 2011. Palaeoenvironmental history of the São Francisco de Paula region in southern Brazil during the late Quaternary inferred from the Rincão das Cabritas core. The Holocene 22, 12511262.CrossRefGoogle Scholar
Jeske-Pieruschka, V., Fidelis, A., Bergamin, R.S., Vélez, E., Behling, H., 2010. Araucaria forest dynamics in relation to fire frequency in southern Brazil based on fossil and modern pollen data. Review of Palaeobotany and Palynology 160, 5365.CrossRefGoogle Scholar
Jeske-Pieruschka, V., Pillar, V.D., De Oliveira, M.A.T., Behling, H., 2012. New insights into vegetation, climate and fire history of southern Brazil revealed by a 40,000 year environmental record from the State Park Serra do Tabuleiro. Vegetation History and Archaeobotany 22, 299314.CrossRefGoogle Scholar
Joetzjer, E., Douville, H., Delire, C., Ciais, P., 2013. Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3. Climate Dynamics 41, 29212936.CrossRefGoogle Scholar
Joussaume, S., Taylor, K.E., 1995. Status of the Paleoclimate Modeling Intercomparison Project (PMIP). In: Proceedings of the First International AMIP Scientific Conference, WCRP-92 Report, Monterey, California, USA, pp. 425–430.Google Scholar
Kanner, L.C., Burns, S.J., Cheng, H., Edwards, R.L., Vuille, M., 2013. High-resolution variability of the South American summer monsoon over the last seven millennia: insights from a speleothem record from the central Peruvian Andes. Quaternary Science Reviews 75, 110.CrossRefGoogle Scholar
Killeen, T.J., Douglas, M., Consiglio, T., Jørgensen, P.M., Mejia, J., 2007. Dry spots and wet spots in the Andean hotspot. Journal of Biogeography 34, 13571373.CrossRefGoogle Scholar
Kipnis, R., Caldarelli, S.B., de Oliveira, W.C., 2005. Contribuição para a cronologia da colonização amazônica e suas implicações teóricas. Revista de Arqueologia 18, 8193.CrossRefGoogle Scholar
Koutavas, A., Joanides, S., 2012. El Niño-Southern Oscillation extrema in the Holocene and Last Glacial Maximum. Paleoceanography 27, 115.CrossRefGoogle Scholar
Lachniet, M.S., 2009. Climatic and environmental controls on speleothem oxygen-isotope values. Quaternary Science Reviews 28, 412432.CrossRefGoogle Scholar
Laurance, W.F., Delamônica, P., Laurance, S.G.W., Vasconcelos, H.L., Lovejoy, T.E., 2000. Rainforest fragmentation kills big trees. Nature 404, 836836.CrossRefGoogle ScholarPubMed
Leal, M.G., Lorscheitter, M.L., 2007. Plant succession in a forest on the Lower Northeast Slope of Serra Geral, Rio Grande do Sul, and Holocene palaeoenvironments, Southern Brazil. Acta Botanica Brasilica 21, 110.CrossRefGoogle Scholar
Ledru, M.-P., 1993. Late Quaternary Environmental and Climatic Changes in Central Brazil. Quaternary Research 39, 9098.CrossRefGoogle Scholar
Ledru, M.-P., Ceccantini, G., Gouveia, S.E.M., López-Sáez, J.A., Pessenda, L.C.R., Ribeiro, A.S., 2006. Millenial-scale climatic and vegetation changes in a northern Cerrado (Northeast, Brazil) since the Last Glacial Maximum. Quaternary Science Reviews 25, 11101126.CrossRefGoogle Scholar
Ledru, M.-P., Mourguiart, P., Riccomini, C., 2009. Related changes in biodiversity, insolation and climate in the Atlantic rainforest since the last interglacial. Palaeogeography, Palaeoclimatology, Palaeoecology 271, 140152.CrossRefGoogle Scholar
Ledru, M.-P., Rousseau, D.D., Cruz, F.W., Riccomini, C., Karmann, I., Martin, L., 2005. Paleoclimate changes during the last 100,000 yr from a record in the Brazilian Atlantic rainforest region and interhemispheric comparison. Quaternary Research 64, 444450.CrossRefGoogle Scholar
Leonhardt, A., Lorscheitter, M.L., 2010. The last 25,000 years in the Eastern Plateau of Southern Brazil according to Alpes de São Francisco record. Journal of South American Earth Sciences 29, 454463.CrossRefGoogle Scholar
Levine, N.M., Zhang, K., Longo, M., Baccini, A., Phillips, O.L., Lewis, S.L., Alvarez-Dávila, E., et al 2016. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proceedings of the National Academy of Sciences 113, 793797.CrossRefGoogle ScholarPubMed
Liu, K.-B., Colinvaux, P.A., 1988. A 5200-year history of Amazon rain forest. Journal of Biogeography 15, 231.CrossRefGoogle Scholar
Lorente, F.L., Pessenda, L.C.R., Oboh-Ikuenobe, F., Buso, A.A. Jr., Cohen, M.C.L., Meyer, K.E.B., Giannini, P.C.F., et al 2014. Palynofacies and stable C and N isotopes of Holocene sediments from Lake Macuco (Linhares, Espírito Santo, southeastern Brazil): depositional settings and palaeoenvironmental evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 415, 6982.CrossRefGoogle Scholar
Macedo, R.B., Souza, P.A., Bauermann, S.G., Bordignon, S.A.L., 2010. Palynological analysis of a late Holocene core from Santo Antônio da Patrulha, Rio Grande do Sul, Southern Brazil. Anais de Academia Brasileira de Ciências 82, 731745.CrossRefGoogle Scholar
Maezumi, S.Y., Power, M.J., Mayle, F.E., McLauchlan, K.K., Iriarte, J., 2015. Effects of past climate variability on fire and vegetation in the cerrãdo savanna of the Huanchaca Mesetta, NE Bolivia. Climate of the Past 11, 835853.CrossRefGoogle Scholar
Malhi, Y., Phillips, O.L., Lloyd, J., Baker, T., Wright, J., Almeida, S., Arroyo, L., et al 2002. An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). Journal of Vegetation Science 13, 439450.CrossRefGoogle Scholar
Malhi, Y., Roberts, J.T., Betts, R.A., Killeen, T.J., Li, W., Nobre, C.A., 2008. Climate change, deforestation, and the fate of the Amazon. Science 319, 169172.CrossRefGoogle ScholarPubMed
Marchant, R., Cleef, A., Harrison, S.P., Hooghiemstra, H., Markgraf, V., van Boxel, J., Ager, T., et al 2009. Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago. Climate of the Past 5, 369461.CrossRefGoogle Scholar
Marengo, J.A., Douglas, M.W., Dias, P.L.S., 2002. The South American low-level jet east of the Andes during the 1999 LBA-TRMM and LBA-WET AMC campaign. Journal of Geophysical Research 107, 8079.CrossRefGoogle Scholar
Mayle, F.E., Burbridge, R.E., Killeen, T.J., 2000. Millennial-scale dynamics of southern Amazonian rain forests. Science 290, 22912294.CrossRefGoogle ScholarPubMed
Mayle, F.E., Power, M.J., 2008. Impact of a drier Early-Mid-Holocene climate upon Amazonian forests. Philosophical Transactions of the Royal Society B: Biological Sciences 363, 18291838.CrossRefGoogle ScholarPubMed
McMichael, C.N.H., Bush, M.B., Piperno, D.R., Silman, M.R., Zimmerman, A.R., Anderson, C., 2012. Spatial and temporal scales of pre-Columbian disturbance associated with western Amazonian lakes. The Holocene 22, 131141.CrossRefGoogle Scholar
Metcalfe, S.E., Whitney, B.S., Fitzpatrick, K.A., Mayle, F.E., Loader, N.J., Street-Perrott, F.A., Mann, D.G., 2014. Hydrology and climatology at Laguna La Gaiba, lowland Bolivia: complex responses to climatic forcings over the last 25 000 years. Journal of Quaternary Science 29, 289300.CrossRefGoogle Scholar
Meyers, P.A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology 114, 289302.CrossRefGoogle Scholar
Montade, V., Ledru, M.-P., Burte, J., Martins, E.S.P.R., Verola, C.F., da Costa, I.R., Silva, F.H.M.E., 2014. Stability of a Neotropical microrefugium during climatic instability. Journal of Biogeography 41, 12151226.CrossRefGoogle Scholar
Morrás, H., Moretti, L., Píccolo, G., Zech, W., 2009. Genesis of subtropical soils with stony horizons in NE Argentina: Autochthony and polygenesis. Quaternary International 196, 137159.CrossRefGoogle Scholar
Moy, C.M., Seltzer, G.O., Rodbell, D.T., Anderson, D.M., 2002. Variability of El Nino/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162165.CrossRefGoogle ScholarPubMed
Nuno Veríssimo, P., Safford, H.D., Behling, H., 2012. Holocene vegetation and fire history of the Serra do Caparao, SE Brazil. The Holocene 22, 12431250.Google Scholar
Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., D’amico, J.A., et al 2001. Terrestrial Ecoregions of the World: A New Map of Life on Earth A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933938.CrossRefGoogle Scholar
Parizzi, M.G., Salgado-Labouriau, M.L., Kohler, H.C., 1998. Genesis and environmental history of Lagoa Santa, southeastern Brazil. The Holocene 8, 311321.CrossRefGoogle Scholar
Pennington, R.T., Prado, D.E., Pendry, C.A., 2000. Neotropical seasonally dry forests and Quaternary vegetation changes. Journal of Biogeography 27, 261273.CrossRefGoogle Scholar
Pessenda, L.C.R., 2004. Holocene fire and vegetation changes in southeastern Brazil as deduced from fossil charcoal and soil carbon isotopes. Quaternary International 114, 3543.CrossRefGoogle Scholar
Pessenda, L.C.R., Boulet, R., Aravena, R., Rosolen, V., Gouveia, S.E.M., Ribeiro, A.S., Lamotte, M., 2001. Origin and dynamics of soil organic matter and vegetation changes during the Holocene in a forest-savanna transition zone, Brazilian Amazon region. The Holocene 11, 250254.CrossRefGoogle Scholar
Pessenda, L.C.R., De Oliveira, P.E., Mofatto, M., de Medeiros, V.B., Francischetti Garcia, R.J., Aravena, R., Bendassolli, J.A., Zuniga Leite, A., Saad, A.R., Lincoln Etchebehere, M., 2009. The evolution of a tropical rainforest/grassland mosaic in southeastern Brazil since 28,000 14C yr BP based on carbon isotopes and pollen records. Quaternary Research 71, 437452.CrossRefGoogle Scholar
Pessenda, L.C.R., Gomes, B.M., Aravena, R., Ribeiro, A.S., Boulet, R., Gouveia, S.E.M., 1998. The carbon isotope record in soils along a forest-cerrado ecosystem transect: implications for vegetation changes in the Rondonia state, southwestern Brazilian Amazon region. The Holocene 8, 599603.CrossRefGoogle Scholar
Pessenda, L.C.R., Gouveia, S.E.M., Ribeiro, A., de, S., De Oliveira, P.E., Aravena, R., 2010. Late Pleistocene and Holocene vegetation changes in northeastern Brazil determined from carbon isotopes and charcoal records in soils. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 597608.CrossRefGoogle Scholar
Pessenda, L.C.R., Ledru, M.-P., Gouveia, S.E.M., Aravena, R., Ribeiro, A.S., Bendassolli, J.A., Boulet, R., 2005. Holocene palaeoenvironmental reconstruction in northeastern Brazil inferred from pollen, charcoal and carbon isotope records. The Holocene 15, 812820.CrossRefGoogle Scholar
Pessenda, L.C.R., Ribeiro, A., de, S., Gouveia, S.E.M., Aravena, R., Boulet, R., Bendassolli, J.A., 2004. Vegetation dynamics during the late Pleistocene in the Barreirinhas region, Maranhão State, northeastern Brazil, based on carbon isotopes in soil organic matter. Quaternary Research 62, 183193.CrossRefGoogle Scholar
Phillips, O.L., Aragão, L.E.O.C., Lewis, S.L., Fisher, J.B., Lloyd, J., Lopez-Gonzalez, G., Malhi, Y., et al 2009. Drought Sensitivity of the Amazon Rainforest. Science 323, 13441347.CrossRefGoogle ScholarPubMed
Piperno, D.R., 2006. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists. Altamira Press, Lanham, Maryland.Google Scholar
Pires, G.L.P., Meyer, K.E.B., Gomes, M.O.S., 2016. Palinologia da Vereda Juquinha/Cuba, Parque Estadual da Serra do Cabral, Minas Gerais, Brasil. Revista Brasileira de Paleontologia 19, 95110.CrossRefGoogle Scholar
Power, M.J., Marlon, J., Ortiz, N., Bartlein, P.J., Harrison, S.P., Mayle, F.E., Ballouche, A., et al 2008. Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Climate Dynamics 30, 887907.CrossRefGoogle Scholar
Prado, D.E., Gibbs, P.E., 1993. Patterns of Species Distributions in the Dry Seasonal Forests of South America. Annals of the Missouri Botanical Garden 80, 902928.CrossRefGoogle Scholar
Prado, L.F., Wainer, I., Chiessi, C.M., 2013a. Mid-Holocene PMIP3/CMIP5 model results: Intercomparison for the South American Monsoon System. The Holocene 23, 19151920.CrossRefGoogle Scholar
Prado, L.F., Wainer, I., Chiessi, C.M., Ledru, M.-P., Turcq, B., 2013b. A mid-Holocene climate reconstruction for eastern South America. Climate of the Past 9, 21172133.CrossRefGoogle Scholar
Prentice, I.C., 1985. Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quaternary Research 23, 7686.CrossRefGoogle Scholar
Prentice, I.C., Guiot, J., Huntley, B., Jolly, D., Cheddadi, R., 1996. Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Climate Dynamics 12, 185194.CrossRefGoogle Scholar
Prentice, I.C., Webb, T. III, 1998. BIOME 6000: reconstructing global mid‐Holocene vegetation patterns from palaeoecological records. Journal of Biogeography 25, 9971005.CrossRefGoogle Scholar
Raczka, M.F., De Oliveira, P.E., Bush, M.B., McMichael, C.N.H., 2013. Two paleoecological histories spanning the period of human settlement in southeastern Brazil. Journal of Quaternary Science 28, 144151.CrossRefGoogle Scholar
Raia, A., Cavalcanti, I.F.A., 2008. The Life Cycle of the South American Monsoon System. Journal of Climate 21, 62276246.CrossRefGoogle Scholar
Rammig, A., Jupp, T., Thonicke, K., Tietjen, B., Heinke, J., Ostberg, S., Lucht, W., Cramer, W., Cox, P.M., 2010. Estimating the risk of Amazonian forest dieback. The New Phytologist 187, 694706.CrossRefGoogle ScholarPubMed
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., et al 2013. IntCal13 and marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Rodrigues-Filho, S., Behling, H., Irion, G., Müller, G., 2002. Evidence for Lake Formation as a Response to an Inferred Holocene Climatic Transition in Brazil. Quaternary Research 57, 131137.CrossRefGoogle Scholar
Rowe, H.D., Dunbar, R.B., Mucciarone, D.A., Seltzer, G.O., Baker, P.A., Fritz, S., 2002. Insolation, moisture balance and climate change on the South American Altiplano since the last glacial maximum. Climatic Change 52, 175199.CrossRefGoogle Scholar
Rowland, L., da Costa, A.C.L., Galbraith, D.R., Oliveira, R.S., Binks, O.J., Oliveira, A.A.R., Pullen, A.M., et al 2015. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119122.CrossRefGoogle Scholar
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., et al 2010a. NCEP Climate Forecast System Reanalysis (CFSR) Monthly Products, January 1979 to December 2010. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, Colorado.Google Scholar
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., et al 2010b. The NCEP Climate Forecast System Reanalysis. Bulletin of the American Meteorological Society 91, 10151057.CrossRefGoogle Scholar
Saia, S.E.M.G., Pessenda, L.C.R., Gouveia, S.E.M., Aravena, R., Bendassolli, J.A., 2008. Last glacial maximum (LGM) vegetation changes in the Atlantic Forest, southeastern Brazil. Quaternary International 184, 195201.CrossRefGoogle Scholar
Sampaio, E.V.S.B., 1995. Overview of the Brazilian caatinga. In Bullock, S.H., Mooney, H.A., Medina, E. (Eds.), Seasonally Dry Tropical Forests. Cambridge University Press, Cambridge, pp. 3563.CrossRefGoogle Scholar
Seltzer, G.O., Rodbell, D., Burns, S., 2000. Isotopic evidence for late Quaternary climatic change in tropical South America. Geology 28, 3538.2.0.CO;2>CrossRefGoogle Scholar
Sifeddine, A., Albuquerque, A.L.S., Ledru, M.-P., 2003. A 21 000 cal years paleoclimatic record from Caçó Lake, northern Brazil: evidence from sedimentary and pollen analyses. Palaeogeography, Palaeoclimatology, Palaeoecology 189, 2534.CrossRefGoogle Scholar
Sifeddine, A., Bertrand, P., Fournier, M., 1994. La sédimentation organique lacustre en milieu tropical humide (Carajás, Amazonie orientale, Brésil): relation avec les changements climatiques au cours des 60 000 dernières années. Bulletin de la Société Géologique de France 165, 613621.Google Scholar
Sifeddine, A., Martin, L., Turcq, B., Volkmer-Ribeiro, C., Soubiès, F., Cordeiro, R.C., Suguio, K., 2001. Variations of the Amazonian rainforest environment: a sedimentological record covering 30,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 168, 221235.CrossRefGoogle Scholar
Sifeddine, A., Wirrmann, D., Albuquerque, A.L.S., Turcq, B., Cordeiro, R.C., Gurgel, M.H.C., Abrão, J.J., 2004. Bulk composition of sedimentary organic matter used in palaeoenvironmental reconstructions: examples from the tropical belt of South America and Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 214, 4153.CrossRefGoogle Scholar
Silva, J.M.C.D., Bates, J.M., 2002. Biogeographic Patterns and Conservation in the South American Cerrado: A Tropical Savanna Hotspot. BioScience 52, 225233.CrossRefGoogle Scholar
Silva, L., Sternberg, L., Haridasan, M., 2008. Expansion of gallery forests into central Brazilian savannas. Global Change Biology 14, 21082118.CrossRefGoogle Scholar
Silva, V.B.S., Kousky, V.E., 2012. The South American Monsoon System: Climatology and Variability. In Wang, S., Gillies, R.R. (Eds.), Modern Climatology. InTech. pp. 123152. http://dx.doi.org/10.5772/2014.Google Scholar
Spracklen, D.V., Arnold, S.R., Taylor, C.M., 2012. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282285.CrossRefGoogle ScholarPubMed
Sugita, S., 1993. A model of pollen source area for an entire lake surface. Quaternary Research 39, 239244.CrossRefGoogle Scholar
Sugita, S., 1994. Pollen Representation of Vegetation in Quaternary Sediments - Theory and Method in Patchy Vegetation. Journal of Ecology 82, 881897.CrossRefGoogle Scholar
Sugita, S., 2007a. Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. The Holocene 17, 229241.CrossRefGoogle Scholar
Sugita, S., 2007b. Theory of quantitative reconstruction of vegetation II: all you need is LOVE. The Holocene 17, 243257.CrossRefGoogle Scholar
Taylor, Z.P., Horn, S.P., Mora, C.I., Orvis, K.H., Cooper, L.W., 2010. A multi-proxy palaeoecological record of late-Holocene forest expansion in lowland Bolivia. Palaeogeography, Palaeoclimatology, Palaeoecology 293, 98107.CrossRefGoogle Scholar
Turcq, B., Albuquerque, A.L.S., Cordeiro, R.C., Sifeddine, A., Simoes Filho, F.F.L., Souza, A.G., Abrão, J.J., Oliveira, F.B.L., Silva, A.O., Capitâneo, J., 2002. Accumulation of organic carbon in five Brazilian lakes during the Holocene. Sedimentary Geology 148, 319342.CrossRefGoogle Scholar
Urrego, D.H., Bush, M.B., Silman, M.R., Niccum, B.A., La Rosa, P., McMichael, C.N.H., Hagen, S., Palace, M., 2013. Holocene fires, forest stability and human occupation in south‐western Amazonia. Journal of Biogeography 40, 521533.CrossRefGoogle Scholar
van Breukelen, M.R., Vonhof, H.B., Hellstrom, J.C., Wester, W.C.G., Kroon, D., 2008. Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia. Earth and Planetary Science Letters 275, 5460.CrossRefGoogle Scholar
Vuille, M., Burns, S.J., Taylor, B.L., Cruz, F.W., Bird, B.W., Abbott, M.B., Kanner, L.C., Cheng, H., Novello, V.F., 2012. A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia. Climate of the Past 8, 13091321.CrossRefGoogle Scholar
Wang, X., Auler, A.S., Edwards, R.L., Cheng, H., Ito, E., Wang, Y., Kong, X., Solheid, M., 2007. Millennial-scale precipitation changes in southern Brazil over the past 90,000 years. Geophysical Research Letters 34, L23701. htttp://dx.doi.org/10.1029/2007GL031149.CrossRefGoogle Scholar
Wang, X., Edwards, R.L., Auler, A.S., Cheng, H., Kong, X., Wang, Y., Cruz, F.W., Dorale, J.A., Chiang, H.-W., 2017. Hydroclimate changes across the Amazon lowlands over the past 45,000 years. Nature 541, 204207.CrossRefGoogle ScholarPubMed
Watling, J., Iriarte, J., Mayle, F.E., Schaan, D., Pessenda, L.C.R., Loader, N.J., Street-Perrott, F.A., Dickau, R.E., Damasceno, A., Ranzi, A., 2017. Impact of pre-Columbian “geoglyph” builders on Amazonian forests. Proceedings of the National Academy of Sciences 114, 18681873.CrossRefGoogle ScholarPubMed
Watling, J., Iriarte, J., Whitney, B.S., Consuelo, E., Mayle, F.E., Castro, W., Schaan, D., Feldpausch, T.R., 2016. Differentiation of neotropical ecosystems by modern soil phytolith assemblages and its implications for palaeoenvironmental and archaeological reconstructions II: southwestern Amazonian forests. Review of Palaeobotany and Palynology 226, 3043.CrossRefGoogle Scholar
Weng, C., Bush, M.B., Athens, J.S., 2002. Holocene climate change and hydrarch succession in lowland Amazonian Ecuador. Review of Palaeobotany and Palynology 120, 7390.CrossRefGoogle Scholar
Werneck, F.P., 2011. The diversification of eastern South American open vegetation biomes: Historical biogeography and perspectives. Quaternary Science Reviews 30, 16301648.CrossRefGoogle Scholar
Whitney, B.S., Mayle, F.E., 2012. Pediastrum species as potential indicators of lake-level change in tropical South America. Journal of Paleolimnology 47, 601615.CrossRefGoogle Scholar
Whitney, B.S., Mayle, F.E., Punyasena, S.W., Fitzpatrick, K.A., Burn, M.J., Guillen, R., Chavez, E., Mann, D., Pennington, R.T., Metcalfe, S.E., 2011. A 45kyr palaeoclimate record from the lowland interior of tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology 307, 177192.CrossRefGoogle Scholar
Ybert, J.-P., Turcq, B., Albuquerque, A.L., Cocquit, C., 2000. Evolution paléoécologique et paléoclimatique holocène dans la région moyenne du Rio Doce (Minas Gerais, Brésil) déduite de l’analyse palynologique de deux carottes du lac Dom Helvécio. In Servant, M., Servant-Vildary, S. (Eds.), Dynamique à long terme des écosystèmes forestiers intertropicaux, UNESCO, Paris, pp. 413421.Google Scholar
Zech, M., Zech, R., Morrás, H., Moretti, L., Glaser, B., Zech, W., 2009. Late Quaternary environmental changes in Misiones, subtropical NE Argentina, deduced from multi-proxy geochemical analyses in a palaeosol-sediment sequence. Quaternary International 196, 121136.CrossRefGoogle Scholar
Zhou, J., Lau, K.M., 1998. Does a monsoon climate exist over South America? Journal of Climate 11, 10201040.2.0.CO;2>CrossRefGoogle Scholar
Supplementary material: File

Smith and Mayle supplementary material 1

Smith and Mayle supplementary material

Download Smith and Mayle supplementary material 1(File)
File 986.3 KB