Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-21T13:41:48.010Z Has data issue: false hasContentIssue false

Polarity of Hexagonal GaN Grown on GaAs (111)A and (111)B Surfaces by HVPE and Movpe

Published online by Cambridge University Press:  17 March 2011

O. Takahashi
Affiliation:
University of Tsukuba, Institute of Applied Physics, Tsukuba., Japan
M. Namerikawa
Affiliation:
University of Tsukuba, Institute of Applied Physics, Tsukuba., Japan
H. Tanaka
Affiliation:
NTT Cyber Space Laboratories, Musashino-shi, Japan
R. Souda
Affiliation:
National Institute for Research in Inorganic Materials, Tsukuba,., Japan
T. Suemasu
Affiliation:
University of Tsukuba, Institute of Applied Physics, Tsukuba., Japan
F. Hasegawa
Affiliation:
University of Tsukuba, Institute of Applied Physics, Tsukuba., Japan
Get access

Abstract

Summary:

Dependence of hexagonal GaN polarity on the polarity of GaAs (111) substrates was investigated by CAICISS for HVPE and MOVPE. Although polarity of MOVPE GaN followed the polarity of GaAs substrate; Ga polar for (111)A and N polar for (111)B, both layers of HVPE GaN grown on GaAs (111)A & B surfaces were Ga polarity. Crystal quality was better for Ga polarity layers than for N polarity layers for MOVPE. However, Ga polar GaN grown on GaAs (111)B by HVPE had better crystal quality than that on the (111)A. These results can be understood by difference of the buffer layers and difference of growth kinetics between HVPE and MOVPE.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Ponce, F. A., Bour, D. P., Young, W. T., Suanders, M., and Steeds, J. W. Appl. Phys. Lett. 69 (1996) 337339 Google Scholar
2) Hellman, E. S.: MRS Internet J. Nitride Semicond. Res. 3 (1998) 111 Google Scholar
3) Sonoda, S., Shimizu, S., Suzuki, Y., Balaklishnan, K., Shirakashi, J. and Okumura, H. Jpn. J. Appl. Phys. 39 (2000) pp. L73–L75Google Scholar
4) Sonoda, S., Shimizu, S., Shen, X. Q., Hara, S. and Okumura, H. Jpn. J. Appl. Phys. 39 (2000) pp. L202–L204Google Scholar
5) Shen, X. Q., Ide, T., Cho, S. H., Shimizu, M., Hara, S., Okumura, H., Sonoda, S. and Shimizu, S. Jpn. J. Appl. Phys. 39 (2000) pp. L16–L18Google Scholar
6) Kikuchi, A., Yamada, T., Nakamura, S., Kusakabe, K., Sugihara, D. and Kishino, K. Jpn. J. Appl. Phys. 39 (2000) pp. L330–L333Google Scholar
7) Hasegawa, F., Minami, M., Sunaba, K. and Suemasu, T. Jpn. J. Appl. Phys. 38 (1999) pp. L700–L702Google Scholar
8) Nakadaira, A. and Tanaka, H. Appl. Phys. Lett. 70 (1997) 27202722 Google Scholar
9) Shimizu, S., Suzuki, Y., Nishihara, T., Hayashi, S. and Shinohara, M. Jpn. J. Appl. Phys. 37 (1998) pp. L703–L705Google Scholar
10) Sonoda, S., Shimizu, S., Suzuki, Y., Balakrishnan, K., Shirakashi, J., Okumura, H., Nishihara, T. and Shinohara, M. Jpn. J. Appl. Phys. 38 (1999) pp. L1219–L1221Google Scholar