Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T09:34:04.995Z Has data issue: false hasContentIssue false

Limited membership in Pleistocene reef coral assemblages from the Huon Peninsula, Papua New Guinea: constancy during global change

Published online by Cambridge University Press:  14 July 2015

John M. Pandolfi*
Affiliation:
Center for Tropical Paleoecology and Archaeology, Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Republic of Panamá

Abstract

One of the most intriguing questions in community ecology remains unanswered: Are ecological communities open assemblages with each species reacting individually to environmental change, or are they integrated units consisting of multispecies assemblages acting in concert? I address this question for marine organisms by examining the taxonomic composition and diversity of Indo-Pacific reef coral communities that have undergone repeated global change between 125 and 30 Ka (thousand years before present).

Investigation of community constancy through time relies on two critical questions: (1) Are there significant differences in taxonomic composition among communities from different times? and if not, (2) Are the observed patterns in temporal similarity significantly different from expected patterns resulting from a random sampling of the available within-habitat species pool?

Constancy in taxonomic composition and species richness of Pleistocene reef coral assemblages is maintained through a 95-k.y. interval in the raised reef terraces of the Huon Peninsula, Papua New Guinea. Fossil reef coral assemblages show limited membership in species composition despite repeated exposure to marked fluctuations in sea level (up to 120 m) and sea-surface temperatures (up to 6°). During the 95-k.y. interval, the reefs experienced nine cycles of perturbation and subsequent reassembly with similar species composition. Spatial differences in reef coral species composition were greater among the three study sites than among reefs of different ages. Thus local environmental parameters associated with riverine and terrestrial sources had a greater influence on reef coral composition than global climate and sea level changes.

The ecological dynamics of reef communities from Papua New Guinea are in marked contrast to those of Quaternary terrestrial and level bottom marine communities which appear to show unlimited community membership on both larger and smaller time scales. Differences in community assembly among ecosystems mean either that coral reefs are fundamentally different or that different ecological patterns and processes are occurring at different temporal scales.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aharon, P. 1983. 140,000 yr isotope climatic record from raised coral reefs in New Guinea: Nature 304:720723.CrossRefGoogle Scholar
Aharon, P., and Chappell, J. 1986. Oxygen isotopes, sea level changes, and the temperature history of a coral reef environment in New Guinea over the last 105 thousand years. Palaeoecology, Palaeoclimatology, Palaeogeography 56:337379.CrossRefGoogle Scholar
Bak, R. P. M., and Nieuwland, G. 1995. Long-term change in coral communities along depth gradients over leeward reefs in the Netherlands Antilles. Bulletin of Marine Science 56:609619.Google Scholar
Beck, J. W., Edwards, E., Ito, E., Taylor, F., Recy, J., Rougerie, F., Joannot, P., and Henin, C. 1992. Sea-surface temperature from coral skeletal strontium-calcium ratios. Science 257:644647.CrossRefGoogle ScholarPubMed
Bennett, K. D. 1990. Milankovitch cycles and their effects on species in ecological and evolutionary time: Paleobiology 16:1121.CrossRefGoogle Scholar
Bloom, A. L., Broecker, W. S., Chappell, J. M. A., Matthews, R. K., and Mesolella, K. J. 1974. Quaternary sea level fluctuations on a tectonic coast: new 230Th/234U dates from the Huon Peninsula, New Guinea. Quaternary Research 4:185205.CrossRefGoogle Scholar
Bray, J. R., and Curtis, J. T. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27:325349.CrossRefGoogle Scholar
Brett, C. E., and Baird, G. C. 1995. Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian faunas in the Appalachian Basin. pp. 285315In Erwin, D. H. and Anstey, R. L., eds. New approaches to speciation in the fossil record. Columbia University Press, New York.Google Scholar
Bush, M. B., and Colinvaux, P. A. 1990. A pollen record of a complete glacial cycle from lowland Panama. Journal of Vegetation Science 1:105118.CrossRefGoogle Scholar
Buss, L. W., and Jackson, J. B. C. 1979. Competitive networks: non-transitive competitive relationships in cryptic coral reef environments. American Naturalist 113:223234.CrossRefGoogle Scholar
Buzas, M. A., and Culver, S. J. 1994. Species pool and dynamics of marine paleocommunities. Science 264:14391441.CrossRefGoogle ScholarPubMed
Buzas, M. A., Koch, C. F., Culver, S. J., and Sohl, N. F. 1982. On the distribution of species occurrence. Paleobiology 8:143150.CrossRefGoogle Scholar
Chappell, J. 1974. Geology of coral terraces, Huon Peninsula, New Guinea: a study of Quaternary tectonic movements and sea-level changes. Geological Society of America Bulletin 85:553570.2.0.CO;2>CrossRefGoogle Scholar
Chappell, J. 1983. A revised sea level record for the last 300,000 years from Papua New Guinea. Search 4:99101.Google Scholar
Chappell, J., and Polach, H. A. 1976. Holocene sea-level change and coral-reef growth at Huon Peninsula, Papua New Guinea. Geological Society of America Bulletin 87:235240.2.0.CO;2>CrossRefGoogle Scholar
Chappell, J., and Polach, H. A. 1991. Post-glacial sea-level rise from a coral record at Huon Peninsula, Papua New Guinea. Nature 349:147149.CrossRefGoogle Scholar
Chappell, J., and Shackleton, N. J. 1986. Oxygen isotopes and sea level. Nature 324:137140.CrossRefGoogle Scholar
Chappell, J., and Veeh, H. H. 1978. 230Th/234U age support of an interstadial sea level of −40 m at 30,000 yr bp. Nature 276:602604.CrossRefGoogle Scholar
Chesson, P., and Huntly, N. 1989. Short-term instabilities and long-term community dynamics. Trends in Ecology and Evolution 4:293298.CrossRefGoogle ScholarPubMed
Chesson, P. L., and Warner, R. R. 1981. Environmental variability promotes coexistence in lottery competitive systems. American Naturalist 117:923943.CrossRefGoogle Scholar
Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18:117143.CrossRefGoogle Scholar
Clarke, K. R., and Warwick, R. M. 1994. Change in marine communities: an approach to statistical analysis and interpretation. National Environment Research Council, Bournemouth, U.K.Google Scholar
Combourieu-Nebout, N. 1993. Vegetation response to upper Pliocene glacial/interglacial cyclicity in the central Mediterranean. Quaternary Research 40:228236.CrossRefGoogle Scholar
Connell, J. H. 1978. Diversity in tropical rain forests and coral reefs. Science 199:13021310.CrossRefGoogle ScholarPubMed
Connell, J. H., and Sousa, W. P. 1983. On the evidence needed to judge ecological stability or persistence. American Naturalist 121:789824.CrossRefGoogle Scholar
Connor, E. F., and Simberloff, D. S. 1978. Species number and compositional similarity of the Galápagos flora and avifauna. Ecological Monographs 48:219248.CrossRefGoogle Scholar
Connor, E. F., and Simberloff, D. S. 1979. The assembly of species communities: chance or competition? Ecology 60:11321140.CrossRefGoogle Scholar
Cornell, H. V., and Lawton, J. H. 1992. Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. Journal of Animal Ecology 61:112.CrossRefGoogle Scholar
Cronin, T. M., Szabo, B. J., Ager, T. A., Hazel, J. E., and Owens, J. P. 1981. Quaternary climates and sea levels of the U.S. Atlantic coastal plain. Science 211:233240.Google ScholarPubMed
Crook, K. W. 1989. Suturing history of an allochthonous terrane at a modern plate boundary traced by flysch-to-molasse facies transitions. Sedimentary Geology 61:4979.CrossRefGoogle Scholar
Davis, G. E. 1982. A century of natural change in coral distribution at the Dry Tortugas: a comparison of reef maps from 1881 and 1976. Bulletin of Marine Science 32:608623.Google Scholar
Davis, M. B. 1986. Climatic instability, time lags, and community disequilibrium. pp. 269284In Diamond, J. and Case, T. J., eds. Community ecology. Harper and Row, New York.Google Scholar
Davis, M. B., Sugita, S., Calcote, R. R., Ferrari, J. B., and Frelich, L. E. 1994. Historical development of alternate communities in a hemlock-hardwood forest in northern Michigan, USA. pp. 1939In Edwards, P.J., May, R.M., and Webb, N.R., eds. Large-scale ecology and conservation biology. Blackwell Scientific, Oxford.Google Scholar
DiMichele, W. A. 1994. Ecological patterns in time and space. Paleobiology 20:8992.CrossRefGoogle Scholar
DiMichele, W. A., and Phillips, T. L. 1995. The response of hierarchially structured ecosystems to long-term climatic change: a case study using tropical peat swamps of Pennsylvanian age. pp. 134155In Stanley, S. M., Knoll, A. H., and Kennett, J. P., eds. Effects of past global change on life. National Research Council, Studies in Geophysics. National Academy Press, Washington, D.C.Google Scholar
DiMichele, W. A., and Phillips, T. L. 1996. Climate change, plant extinctions and vegetational recovery during the Middle-Late Pennsylvanian transition: the case of tropical peat-forming environments in North America. Pp 201221in Hart, M. B., ed. Biotic recovery from mass extinction events. Geological Society of America Special Publication No. 102.CrossRefGoogle Scholar
DiMichele, W. A., Pfefferkorn, H. W., and Phillips, T. L. 1995. Persistence of Late Carboniferous tropical vegetation during glacially driven climatic and sea-level fluctuations. Palaeogeography, Palaeoclimatology, Palaeoecology.CrossRefGoogle Scholar
Done, T. J. 1983. Coral zonation: Its nature and significance. pp. 107147in Barnes, D.J., ed. Perspectives on coral reefs. Australian Institute of Marine Science and Brian Clooston, Manuka, A.C.T., Australia.Google Scholar
Done, T. J. 1992. Constancy and change in some Great Barrier Reef coral communities: 1980-1990. American Zoologist 32:655662.CrossRefGoogle Scholar
Done, T. J., Ogden, J. C., Wiebe, W. J., and Rosen, B. R. In press. Biodiversity and ecosystem function of coral reefs. In Mooney, H A., Cushman, J. H., Medina, E., Sala, E. O., and Schultze, E. D., eds. Biodiversity and ecosystem function: a global perspective. John Wiley, Chichester, England.Google Scholar
Drake, J. A. 1990. Communities as assembled structures: do rules govern pattern? Trends in Ecology and Evolution 5:159164.CrossRefGoogle ScholarPubMed
Edwards, R. L., Beck, J. W., Burr, G. S., Donahue, D. J., Chappell, J. M. A., Bloom, A. L., Druffel, E. R. M., and Taylor, F. W. 1993. A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260:962968.CrossRefGoogle ScholarPubMed
Elton, C. 1933. The ecology of animals. Reprint, Science Paperbacks and Methuen, London, 1966.Google Scholar
Fairbanks, R. G. 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature 342:637642.CrossRefGoogle Scholar
Faith, D. P., Minchin, P. R., and Belbin, L. 1987. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69:5768.CrossRefGoogle Scholar
Gladfelter, W. B. 1982. White band disease in Acropora palmata: implications for the structure and growth of shallow reefs. Bulletin of Marine Science 32:639643.Google Scholar
Gleason, H. 1926. The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club 53:120.CrossRefGoogle Scholar
Glynn, P. W., and Colgan, M. W. 1992. Sporadic disturbances in fluctuating coral reef environments: El Niño and coral reef development in the eastern Pacific. American Zoologist 32:707718.CrossRefGoogle Scholar
Goreau, T. F. 1959. The ecology of Jamaican coral reefs. I. Species composition and zonation. Ecology 40:6790.Google Scholar
Goreau, T. F., and Wells, J. W. 1967. The shallow-water Scleractinia of Jamaica: revised list of species and their vertical distribution range. Bulletin of Marine Science 17:442453.Google Scholar
Graham, R. W., and Grimm, E. C. 1990. Effects of global climate change on the patterns of terrestrial biological communities. Trends in Ecology and Evolution 5:289292.CrossRefGoogle ScholarPubMed
Grassle, J. F. 1973. Variety in coral reef communities. pp. 247270In Jones, O. A. and Endean, R., eds. Biology and geology of coral reefs, vol. II. Academic Press, New York.CrossRefGoogle Scholar
Green, D. G., Bradbury, R. H., and Reichelt, R. E. 1987. Patterns of predictability in coral reef community structure. Coral Reefs 6:2734.CrossRefGoogle Scholar
Greenstein, B. J., and Pandolfi, J. M. 1994. Between habitat variability in the fidelity of coral reef death assemblages to their live counterparts: implications for paleoecological studies of Pleistocene reefs. Geological Society of America Abstracts with Programs 26:427.Google Scholar
Greenstein, B. J., and Pandolfi, J. M. In press. Preservation of community structure in modern reef coral life and death assemblages of the Florida Keys: implications for the Quaternary fossil record of coral reefs. Bulletin of Marine Science.Google Scholar
Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S., and Jouzel, J. 1993. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366:552554.CrossRefGoogle Scholar
Guilderson, T. P., Fairbanks, R. G., and Rubenstone, J. L. 1994. Tropical temperature variations since 20,000 years ago: modulating inter-hemispheric climate change. Science 263:663665.CrossRefGoogle Scholar
Hearty, P. J., and Aharon, P. 1988. Amino-acid chronostratigraphy of late Quaternary coral reefs: Huon Peninsula, New Guinea, and the Great Barrier Reef, Australia. Geology 16:579583.2.3.CO;2>CrossRefGoogle Scholar
Hubbell, S. P., and Foster, R. B. 1986. Biology, chance and history and the structure of tropical rain forest tree communities. pp. 314329In Diamond, J. and Case, T. J., eds. Community ecology. Harper and Row, New York.Google Scholar
Hughes, T. P. 1989. Community structure and diversity of coral reefs: the role of history. Ecology 70:275279.CrossRefGoogle Scholar
Hughes, T. P. 1994. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:15471551.CrossRefGoogle ScholarPubMed
Hughes, T. P., and Jackson, J. B. C. 1985. Population dynamics and life histories of foliaceous corals. Ecological Monographs 55:141166.CrossRefGoogle Scholar
Hughes, T. P., Reed, D. C., and Boyle, M.-J. 1987. Herbivory on coral reefs: community structure following mass mortalities of sea urchins. Journal of Experimental Marine Biology and Ecology 113:3959.CrossRefGoogle Scholar
Jablonski, D. 1991. Extinctions: a paleontological perspective. Science 253:754757.CrossRefGoogle ScholarPubMed
Jackson, J. B. C. 1991. Adaptation and diversity of reef corals. Bioscience 41:475482.Google Scholar
Jackson, J. B. C. 1992. Pleistocene perspectives on coral reef community structure. American Zoologist 32:719731.CrossRefGoogle Scholar
Jackson, J. B. C. 1994. Community unity? Science 264:14121413.CrossRefGoogle ScholarPubMed
Karlson, R. H., and Hurd, L. E. 1993. Disturbance, coral reef communities, and changing ecological paradigms. Coral Reefs 12:117125.CrossRefGoogle Scholar
Kauffman, E. G., and Fagerstrom, J. A. 1993. The Phanerozoic evolution of reef diversity. pp. 315329In Rickleffs, R. E. and Schulter, D., eds. Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago.Google Scholar
Kenkel, N. C., and Orlóci, L. 1986. Applying metric and nonmetric multidimensional scaling to ecological studies: some new results. Ecology 67:919928.CrossRefGoogle Scholar
Knowlton, N. 1992. Thresholds and multiple stable states in coral reef community dynamics. American Zoologist 32:674682.CrossRefGoogle Scholar
Knowlton, N., and Jackson, J. B. C. 1994. New taxonomy and niche partitioning on coral reefs: jack of all trades or master of some? Trends in Ecology and Evolution 9:79.CrossRefGoogle ScholarPubMed
Knowlton, N., Lang, J. C., and Keller, B. D. 1990. Case study of natural population collapse: post-hurricane predation on Jamaican staghorn corals. Smithsonian Contributions in Marine Science 31:125.Google Scholar
Knowlton, N., Lang, J. C., and Keller, B. D. 1992. Sibling species in Montastrea annularis, coral bleaching and the coral climate record. Science 255:330333.CrossRefGoogle Scholar
Koch, C. F. 1987. Prediction of sample size effects on the measured temporal and geographic distribution patterns of species. Paleobiology 13:100107.CrossRefGoogle Scholar
Kruskal, J. B. 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29:127.CrossRefGoogle Scholar
Lang, J. C., and Chornesky, E. A. 1990. Competition between scleractinian reef corals—a review of mechanisms and effects. pp. 209252in Dubinsky, Z., ed. Ecosystems of the world, Vol. 25.Google Scholar
Lessios, H. A. 1988. Mass mortality of Diadema antillarum in the Caribbean: what have we learned? Annual Reviews in Ecology and Systematics 19:371393.CrossRefGoogle Scholar
Levin, S. A. 1992. The problem of pattern and scale in ecology. Ecology 73:19431967.CrossRefGoogle Scholar
Liddell, W. D., and Ohlhorst, S. L. 1988. Comparison of western Atlantic coral reef communities. Proceedings of the Sixth International Coral Reef Symposium 3:281286. Sixth International Coral Reef Symposium Executive Committee, Townsville, Australia.Google Scholar
May, R. M. 1973. Stability and complexity in model ecosystems. Princeton University Press, Princeton, N.J.Google ScholarPubMed
May, R. M. 1994. The effects of spatial scale on ecological questions and answers. pp. 117In Edwards, P. J., May, R. M., and Webb, N. R., eds. Large-scale ecology and conservation biology. Blackwell Scientific, Oxford.Google Scholar
McCulloch, M. T., and Mortimer, G. 1994. High fidelity Sr/Ca record of sea surface temperatures: 1982-83 El Niño and MIS-5e. Abstracts, Eighth International Conference on Geochronology and Isotope Geology, United States Geological Survey Circular 1107:210.Google Scholar
Mesolella, K. J. 1967. Zonation of uplifted Pleistocene coral reefs on Barbados, West Indies. Science 156:638640.CrossRefGoogle ScholarPubMed
Miller, W. III. 1990. Paleocommunity temporal dynamics: the long-term development of multispecies assemblies. Paleontological Society Special Publication No. 5. Lawrence, Kans.Google Scholar
Minchin, P. R. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69:89107.CrossRefGoogle Scholar
Minchin, P. R. 1990. DECODA users manual. Research School of Pacific Studies, Australian National University, Canberra.Google Scholar
Nakamori, T., Wallensky, E., and Campbell, C. 1994. Recent hermatypic coral assemblages at Huon Peninsula. pp. 111116in Ota 1994.Google Scholar
Omura, A., McCulloch, M., Esat, T., Chappell, J., Pillans, B., Ota, Y., Nakamori, T., Matsuda, S, Berryman, K., and Pandolfi, J. 1993. Study on coral reef terraces of the Huon Peninsula, Papua New Guinea—Establishment of Quaternary sea-level and tectonic history, 2. Reexamination on alpha-spectrometric U-series dating of Pleistocene corals. Japan Association for Quaternary Research, Programme and Abstracts 23. Yokohama University, Japan.Google Scholar
Omura, A., Chappell, J., Bloom, A. L., Pillans, B., McCulloch, M., Esat, T., Sasaki, K., and Kawada, Y. 1994. Alpha-spectrometric 230Th/234U dating of Pleistocene corals. pp. 95110in Ota 1994.Google Scholar
Ota, Y. 1994. Study on coral reef terraces of the Huon Peninsula, Papua New Guinea: establishment of Quaternary sea level and tectonic history—a preliminary report on project 04041048 of the Monbusho International Research Program. Yokohama University, Japan.Google Scholar
Ota, Y., Chappell, J., Kelley, R., Yonekura, N., Matsumoto, E., Nishimura, T., and Head, J. 1993. Holocene coral reef terraces and coseismic uplift of Huon Peninsula, Papua New Guinea. Quaternary Research 40:177188.CrossRefGoogle Scholar
Overpeck, J. T., Bartlein, P. J., and Webb, T. III. 1991. Potential magnitude of future vegetation change in eastern North America: comparisons with the past. Science 254:692695.CrossRefGoogle ScholarPubMed
Pandolfi, J. M. 1993. Tectonic history of Papua New Guinea and its significance for marine biogeography. Proceedings of the Seventh International Coral Reef Symposium, Guam, June 1992, Vol. 2:718728. University of Guam Press, Mangilao.Google Scholar
Pandolfi, J. M., and Chappell, J. 1994. Stratigraphy and relative sea level changes at the Kanzarua and Bobongara sections, Huon Peninsula, Papua New Guinea. pp. 119140in Ota 1994.Google Scholar
Pandolfi, J. M., and Greenstein, B. J. 1995. Comparative taphonomy of Indo-Pacific and Caribbean reef corals. Seventh International Symposium on Fossil Cnidaria and Porifera. Abstracts:6364.Google Scholar
Pandolfi, J. M., and Minchin, P. R. 1995. A comparison of taxonomic composition and diversity between reef coral life and death assemblages in Madang Lagoon, Papua New Guinea. Palaeogeography, Palaeoclimatology, Palaeoecology 119:321341.CrossRefGoogle Scholar
Pandolfi, J. M., Best, M. M. R., and Murray, S. P. 1994. The May 15, 1992, coseismic event, Huon Peninsula, Papua New Guinea: comparison with Quaternary tectonic history. Geology 22:239242.2.3.CO;2>CrossRefGoogle Scholar
Porter, J. W., Woodley, J. D., Smith, G. J., Niegel, J. E., Battey, J. F., and Dallmeyer, D. G. 1981. Population trends among Jamaican reef corals. Nature 294:249250.CrossRefGoogle Scholar
Rahel, F. J. 1990. The hierarchical nature of community persistence: a problem of scale. The American Naturalist 136:328344.CrossRefGoogle Scholar
Ricklefs, R. E., and Schluter, D., eds. 1993. Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago.Google Scholar
Roughgarden, J. 1989. The structure and assembly of communities. pp. 203226In Roughgarden, J., May, R. M., and Levin, S. A., eds. Perspectives in ecological theory. Princeton University Press, Princeton, N.J.CrossRefGoogle Scholar
Roughgarden, J., Gaines, S., and Possingham, H. 1988. Recruitment dynamics in complex life cycles. Science 241:14601466.CrossRefGoogle ScholarPubMed
Rowan, R., and Powers, D. A. 1992. Ribosomal RNA sequences and the diversity of symbiotic dinoflagellates (zooxanthellae). Proceedings of the National Academy of Sciences USA 89:36393643.CrossRefGoogle ScholarPubMed
Rowan, R., and Knowlton, N. 1995. Intraspecific diversity and ecological zonation in coral algal symbiosis. Proceedings of the National Academy of Sciences USA 92:28502853.CrossRefGoogle ScholarPubMed
Shi, G. R. 1993. Multivariate data analysis in palaeoecology and palaeobiogeography—a review. Palaeogeography, Palaeoclimatology, Palaeoecology 105:199234.CrossRefGoogle Scholar
Spear, R. W., Davis, M. G., and Shane, L. C. 1994. Late Quaternary history of low- and mid-elevation vegetation in the White Mountains of New Hampshire. Ecological Monographs 64:85109.CrossRefGoogle Scholar
Stein, M., Wasserburg, G. J., Aharon, P., Chen, J. H., Zhu, Z. R., Bloom, A., and Chappell, J. 1992. TIMS U-series dating and stable isotopes of the last interglacial event in Papua New Guinea. Geochemica et Cosmochimica Acta 57:25412554.CrossRefGoogle Scholar
Valentine, J. W., and Jablonski, D. 1993. Fossil communities: compositional variation at many time scales. pp. 341349In Rickleffs, R.E. and Schulter, D., eds. Species diversity in ecological communities. University of Chicago Press, Chicago.Google Scholar
Van Valkenburgh, B. 1995. Tracking ecology over geological time: evolution within guilds of vertebrates. Trends in Ecology and Evolution 10:7176.CrossRefGoogle Scholar
Veeh, H. H., and Chappell, J. 1970. Astronomical theory of climatic change: support from New Guinea. Science 167:862865.CrossRefGoogle ScholarPubMed
Veron, J. E. N., and Kelley, R. 1988. Species stability in reef corals of Papua New Guinea and the Indo-Pacific. Association of Australasian Palaeontologists Memoir 6:169. Brisbane, Australia.Google Scholar
Walter, G. H., and Patterson, H. E. H. 1994. The implications of paleontological evidence for theories of ecological communities and species richness. Australian Journal of Ecology 19:241250.CrossRefGoogle Scholar
Webb, T. III, and Bartlein, P. J. 1992. Global changes during the last 3 million years: climatic controls and biotic responses. Annual Reviews of Ecology and Systematics 23:141173.CrossRefGoogle Scholar
Woodley, J. D., Chornesky, E. A., Clifford, P. A., Jackson, J. B. C., Kaufman, L. S., Knowlton, N., Lang, J. C., Pearson, M. P., Porter, J. W., Rooney, M. C., Rylaarsdan, K. W., Tunnicliffe, V. J., Wahle, C. M., Wulff, J. L., Curtis, A. S. G., Dallmeyer, M. D., Jupp, B. P., Koehl, M. A. R., Neigel, J., and Sides, E. M. 1981. Hurricane Allen's impact on Jamaican coral reefs. Science 214:749755.CrossRefGoogle ScholarPubMed
Zhu, Z. R., Marshall, J. F., and Chappell, J. 1988. Diagenetic sequences of reef corals in the late Quaternary raised coral reefs of Huon Peninsula, New Guinea. Proceedings of the Sixth International Coral Reef Symposium,. Vol. 3:565573. Sixth International Coral Reef Symposium Executive Committee, Townsville, Australia.Google Scholar
Zhu, Z. R., Chappell, J., and Marshall, J. F. 1992. Diagenetic histories of reef corals in the Quaternary raised coral reefs of the Huon Peninsula, Papua New Guinea. Acta Sedimentologica Sinica 10:133145.Google Scholar